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Part IV contains several appendices, including abbreviations and definitions 
regarding basic notions discussed in this dissertation, list of other publications by the author 
of this thesis, selected materials highlighting the context and importance of some of the 
findings presented here and a brief description of the LOOPP software package. 

 
I.2. The Protein Folding Problem  
 
The recent unveiling of the human genome marked the transition in the biological sciences 
towards the post-genomic era, in which the understanding of protein structure and function 
becomes a crucial extension of the sequencing efforts. Despite recent progress in high 
throughput techniques, the experimental determination of protein structure by using X-ray 
crystallography or NMR spectroscopy [Branden and Tooze, 1991; van Holde et. el., 1998] 
remains a bottleneck in structural genomics. This poses a challenge and an opportunity for 
computational approaches to complement and facilitate experimental methods.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Significance of protein folding problem
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Proteins are linear polymers composed of a sequence of amino acid residues that are 

connected by peptide bonds (creating the protein ”backbone''). Without accounting for 
several rare amino acids and numerous chemical modifications of the basic blocks, there are 
20 different amino acids that are characterized by chemically unique side chains (containing 
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from one to approximately 20 atoms) that hang off the backbone chain. Protein molecules 
consist of several tens to several thousands of amino acids and thus between a few hundred 
and tens of thousands of atoms [Branden and Tooze, 1991].  

Proteins typically adopt a “unique” three-dimensional structure, meaning that under 
physiological conditions proteins with identical or nearly identical sequences would adopt 
similar backbone conformations that form a well-defined cluster (called protein family), 
which is different from “structures” (clusters) of other families [Murzin et. al., 1995; 
Bateman et. al., 2002]. On the other hand, however, there are many examples of inherently 
unstructured or unstable proteins that may adopt very different conformations, for example 
depending on specific interactions with other proteins. 

The above paragraph contains several somewhat fuzzy qualifiers – something that 
quantitatively trained readers may find difficult to accept. We will try to explain some of the 
above statements in the remaining part of this section. Yet, it is important to realize that the 
nature of biological objects and processes we are dealing with is such that approximate and 
inherently arbitrary distinctions need to be made when designing mathematical models 
representing the underlying biology. Here, for the sake of simplicity we will only consider 
proteins that under specific conditions fold into well-defined stable structures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Complexity of protein structure: RNA Polymerase II 

Gnatt, Kornberg et. al., Science 292 (2001)

 
The protein folding problem consists of predicting the three-dimensional structure of a 

protein from its amino acid sequence (see Figure 1). The methodology and modeling aspects 
of protein folding have been vastly discussed in the literature. For excellent and up-to-date 
surveys of methods as well as their limitations, the reader is referred to [Schonbrun et. al., 
2002; Banavar et. al., 2001; Sternberg et. al., 1999]. In what follows, we briefly discuss several 
central concepts and ideas that underlie developments in the field. 
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The overall three-dimensional structure (conformation) of a protein may be 
hierarchically described first in terms of the backbone conformation, with locally ordered 
elements of secondary structure, such as alpha helices and beta strands, and then in terms of 
side chain conformations given the relatively rigid backbone conformation. Protein 
structures can be further classified according to their secondary structure content and the 
relative packing of the secondary structure elements into distinct structural classes called 
folds.  At present, there are well over 20,000 known protein structures, which are deposited 
in the Protein Data Bank (PDB) [Berman et. al., 2000]. Depending on the classification 
criteria these structures are divided into several hundred to about one thousand distinct 
folds. A number of families can be distinguished for each fold, with a total number of about 
6,000 distinct families according to the Protein Families (PFAM) database [Bateman et. al., 
2002]. 

The computational protein structure prediction is a challenging problem. In order to 
appreciate the difficulty of the problem at hands it is useful to consider a brute force 
approach based on exhaustive enumerations of all possible conformations that may be 
adopted by a chain of amino acids. Each residue adds to the backbone two single bonds, 
which are free to rotate around their axis. However, due to steric constraints (clashes 
between backbone and side chains atoms), only up to three states (torsional angles) can be 
adopted around each single bond. Therefore, the number of possible backbone 
conformations is of the order of , where  is the number of amino acids in the chain 
[Branden and Tooze, 1991; van Holde et. el., 1998].  

N9 N

While this estimate is an upper bound, the conformational space to be explored 
becomes huge even for relatively short proteins, making a straightforward approach of 
exhaustive search impractical. Of course, even if we could perform an exhaustive search we 
would still face the problem of finding an appropriate scoring function capable of scoring 
the native-like structures higher than all the alternative conformations, which is far from 
trivial as discussed in the subsequent sections. 

Except for extremely slow folders, proteins fold under physiological conditions on 
the time scales of milliseconds to seconds. Thus, the exponential scaling in the size of the 
conformational space remains in stark contrast with the observed folding rates, an 
observation known as the Levinthal’s paradox [van Holde et. el., 1998]. Clearly, nature does 
not use a combinatorial approach in order to fold proteins. Consequently, using nature as a 
guideline may help in designing successful modeling and simulation protocols. In general, 
the existing computational approaches to protein folding problem may be roughly divided 
into two classes, based on the underlying principles and the extent of incorporating the 
physical characteristics of the protein folding process into computational protocols.  

The ab-initio or de novo protein folding simulations attempt to reproduce (or at least to 
use as a guideline) the actual physical folding process. Such folding simulations are based on 
the thermodynamical hypothesis, first introduced by Anfinsen [Anfinsen, 1973], in which the 
unique three-dimensional structure of a protein is postulated to correspond to a global 
minimum of the free energy function. In folding simulations, the energy function to be 
minimized is usually postulated in the form of a conveniently chosen atomistic force field (or 
folding potential), with parameters fitted to reproduce experimental data, whereas the search 
for the native conformation entails the solution of a global optimization problem. Some 
methodological aspects of atomistic models of proteins and computer simulations using 
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Molecular Dynamics, Monte Carlo and other global optimization techniques are discussed in 
[Meller, 2003].  

One might argue that knowing the complete atomistic description of the 
environment and the underlying physical interaction laws, we should be able to find the 
structure of a protein given the environment and interaction partners in particular. However, 
the problem is far from being trivial due to mentioned before size of the conformational 
space and the resulting sampling problem as well as inherent inaccuracy of atomistic force 
fields. Therefore, protocols that are in fact effective combinations of the de novo and 
knowledge-based approaches (see below), such as the Rosetta method by D. Baker and 
colleagues [Simons et. al. 1997], are more successful in practice. 

 
Figure 3. Fold recognition and sequence-to-structure matching (threading) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The alternative protein (or fold) recognition approach [Bowie et. al., 1991; Jones et. al., 

1992; Sippl et. al., 1992] relies on the fact that a significant fraction of protein structures 
(folds) have already been determined.  The search for the overall structure is reduced in fold 
recognition methods to tests of sequence fitness into known and limited number of known 
folds (thus it cannot be applied to novel folds). In other words, the search for the native 
conformation is restricted to the set of known structures, as opposed to computationally 
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expensive search in the space of all possible conformations in case of ab initio folding 
simulations.  

Since proteins of similar sequences usually fold into similar structures, sequence 
alignment (discussed in the next section) is the basic tool for assigning an unknown protein 
to a family of structurally and functionally characterized proteins. In many cases, sequence 
identity between 20 to 30% is sufficient to confidently assign a new protein to its family by 
using family profile based methods for sequence alignment, such as Position Specific 
Iterative Basic Local Alignment Tool (Psi-BLAST) algorithm [Altschul et. al., 1997] or 
profile Hidden Markov Models (HMMs) [Durbin et. al., 1998]. High degree of sequence 
similarity (also called sequence homology) allows one to obtain reliable alignments and 
effectively overlap new sequences with backbones of known structures. Furthermore, final 
three-dimensional models may be built by subsequent refinement of the alignment-based 
initial structure with atomistic force fields and global optimization, an approach known as 
homology modeling. 

On the other hand, experiments found a limited set of folds compared to a large 
diversity of sequences. In other words, while sequence similarity usually implies significant 
structural similarity, the reverse is not true i.e. structural similarity does not necessarily imply 
sequence similarity. Because divergent or unrelated sequences may fold into similar 
structures, it suggests the use of structures to find remote similarities between proteins.  

Threading is a fold recognition technique to directly match a sequence with a protein 
structure and a plausible function [Bowie et. al., 1991]. Protein recognition by sequence-to-
structure matching or threading, allows one to find distant homologs that share the same 
fold without detectable sequence similarity (see for example [Meller and Elber 2001]). Given 
an appropriate scoring function, which can be thought of as a simplified folding potential, 
these methods find the “best” template from the library of known folds by evaluating 
directly sequence-to-structure fitness [Mirny and Shaknovich, 1998].  

The scoring functions for threading (threading potentials) may incorporate different 
measures of sequence to structure fitness, such as compatibility between predicted and 
observed secondary structures or optimality of the effective inter-residue interactions 
imposed by overlaying a query sequence with a template structure. Such scoring functions 
should have a functional form that facilitates efficient computing of optimal alignments 
(with gaps) of a sequence into known protein structures, as discussed in the next two 
sections. 

 

I.3. Sequence Alignment and Dynamic Programming 
 

There is an enormous level of redundancy in biological systems [Gibson and Muse, 2002]. 
For instance, identical or very similar molecules and involving them processes are being used 
across different cells, tissues and species. On the other hand, it is important to recognize the 
limits to similarity (for example between analogous protein pathways in human and yeast) in 
order to identify the most significant (i.e. conserved) features. For these reasons, analogy and 
comparison between molecular objects and processes is an extremely powerful tool in 
biology. 

Proteins and other important bio-molecules such as nucleic acids and poly-
saccharides are linear (with some exceptions) polymers that can be represented as strings or 
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sequences in mathematical terms. For that reason (and in light of the remarks from the 
previous paragraph) string matching and sequence alignment algorithms play central role in 
bioinformatics as crucial tools of sequence analysis and comparison. For example, as 
discussed before, high degree of sequence similarity typically implies similar structure and 
function and, therefore, new proteins can be assigned to known protein families using 
sequence alignment tools.  

In order to assess the level of similarity between two sequences one may utilize their 
optimal alignment. The problem of finding the optimal alignment of two sequences with 
gaps results in a global optimization problem that may be solved efficiently by the Dynamic 
Programming (DP) algorithm. DP is a classical computer science technique to solve 
combinatorial optimization problems [Gusfield, 1999], and plays an important role in 
computational biology [Durbin et. al., 1998]. 

A typical DP problem spawns a search space of potential solutions in a recursive 
fashion, from which the final answer is selected according to some criterion of optimality. If 
an optimal solution can be derived recursively from optimal solutions of subproblems, DP 
can evaluate a search space of exponential size in polynomial time and space as a function of 
the length of the sequences to be aligned, provided that a (“local”) scoring function leading 
to piecewise decomposable problem is used [Durbin et. al., 1998]. In the following we will 
show how DP can be applied to the sequence and sequence-to-structure alignment problem, 
highlighting these aspects of DP that play an important role in designing effective threading 
potentials for sequence-to-structure matching. 

Formally, the relatedness of two strings or sequences may be defined in terms of the 
edit distance defined as the minimal number of basic edit operations, including substitution, 
insertion and deletion, that are needed to transform one string into another [Gusfield, 1999]. 
Edit distance may be further generalized, allowing for character dependent weights (scores) 
of different substitutions. Alternatively, a notion of similarity between two sequences in 
terms of the score of their optimal alignment (which corresponds to their minimum 
weighted edit distance) may be introduced.  

Let us consider two strings (or sequences in the dual formalism), n and 
n , over certain alphabet 

aaaS K211 =
bbbS K212 = A  (for example consisting of twenty letters 

representing different amino acids, { }20
1 == iiA α ), . We also consider an 

extended alphabet that contains the “space” or “dash” symbol, 
lkAba lk ,     , ∀∈

}{−∪= A A , representing 
“gaps” i.e. insertions of unknown (“missing” with respect to other sequences in the family) 
characters to one of the sequences or equivalently deletions of characters from the other 
sequence.  

A global alignment of sequences 1

 
and

 
2 , denoted here as S S ),( 21 SSΛ , is obtained as a 

result of intercalating the two sequences such that a new sequence of length mn +
 

is 
obtained and the order of characters in each sequence is preserved. Such intercalated 
sequence may be conveniently displayed with one of the original sequences above the other 
so that every character or gap in either string is placed against a unique character or gap in 
the other sequence (with gap against gap alignments excluded).  

As an example of conversion between the two representations of global alignments 
let us consider an intercalated sequence 44323211 , which corresponds to an alignment 

 
that can be represented in the alternative notation as:  

babbaaba

44323211 babbaaba −−=Λ

4321

4321

bbbb

aaaa

−
− .                                                                          (1) 
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We would like to comment that local alignments, which are more appropriate when partial 
similarity (e.g. similarity between protein domains) is considered, are in fact displayed in 
Figure 3. As opposed to global alignments, only the subsequences that maximize the 
similarity in terms of the alignment score (defined in equation (2) below) are considered in 
case of local alignments. 

We define a scoring function (also referred to as a scoring matrix),  : RAAf s →× , that 
assigns to each pair of characters a score for replacing (substituting) one character by the 
other, e.g. a score for amino acid substitution, ),( jisf αα . The total score of an alignment 

 of length l is defined as the sum of scores for pairs of characters that are aligned 
against each other, : 

),( 21 SSΛ
),( 1+iis xxf

iAxxxxfSSf ii

l

i
iis ∀∈=Λ +

=
+∑    ,    ;  ),()),(( 1

2/

1
121tot .                                     (2) 

We assume here that the scores of individual pairs (substitutions) are not explicitly 
dependent on the alignment. In other words, the scores are local and do not change 
depending on what characters are aligned at other positions.  

There is an extensive literature regarding the design of scoring matrices for sequence 
alignment (see for example [Henikoff and Henikoff, 1989; Durbin et. al., 1998]). Biologically 
meaningful alignments can only be obtained when suitable scoring schemes are used and 
different tasks may require different scoring matrices. One approach is to choose the scores 
based on the observed frequencies of amino acid substitutions between carefully selected 
representatives of known protein families.  

An example of such derived scores are the BLOSUM scoring matrices, with the 
number indicating the level of evolutionary relatedness between the representatives included 
in the training set (for example BLOSUM50 denotes the scoring matrix derived from 
sequences sharing at least 50% of sequence identity). In addition to BLOSUM scoring 
matrices for 20 amino acids, one also needs to assign gap penalties. Here, for simplicity gap 
penalties are assumed to be proportional to the number of spaces that are inserted.  More 
realistic models of gap penalties usually assume different cost of opening and extending a 
gapped region [Durbin et. al., 1998].  

 
                     Figure 4. Sequence alignments reveal biological relatedness 
 
 i..d......1.......i..2.........3.....i.i...iii.....i.....5.   531 – 582 

-FKLELVEKLFAEDTEAK-NPFSTQDTDLDLEMLAPY-I-PMD---DDLQL-RSFDQLS   Hif-1a 
SFE-ETVEILFEAGASAELDDCRGVSENVILGQMAPIGTGAFDVMIDEESLVKYMPEQK   1i50_A (Rpb1)
... ......1.........2.........3.........4.........5........   1400 - 1458 

 
 
 
 
 i..d......1.......i..2.........3.........4.........5.   531 – 582 

-FKLELVEKLFAEDTEAK-NPFSTQDTDLDLEMLAPYIPMDDDLQLRSFDQLS   Hif-1a 
SFE-ETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKY   Rpb1 (Human) 
... ......1.........2.........3.........4.........5..   1400 - 1451 

 
 
 

 
The size of the search space in the problem of finding the optimal alignment with 

gaps scales exponentially with the length of the sequences considered. Indeed, the total 
number of non-redundant global alignments (two alignments are redundant if they result in 
the same score, ) for two sequences of length n and m is given by totf ]!!/[)!( nmmn + . This is a 
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simple consequence of the one-to-one correspondence between alignments and intercalated 
sequences stated in our definition, and it may be easily verified as follows. The order of each 
of the sequences is preserved when intercalating them, and therefore, we have in fact mn +  
positions to place m elements of the second sequence (once this is done the position of each 
of the elements of the first sequence is fixed unambiguously). Hence, the number of 
intercalated sequences is simply the number of m-element combinations of  elements. mn +

Gaps allow one to take into account important evolutionary events that lead to 
insertions or deletions of stretches of nucleotides (and consequently amino acids) of various 
length, leading to proteins of similar core structures and functions, but of different lengths. 
It is the introduction of gaps, however, which makes the problem scaling exponentially. In 
light of the huge and ever growing size of the biological sequences databases, the importance 
of efficient solutions to this problem can hardly be overstated. This is exactly why DP is so 
important in bioinformatics - using DP the problem may be solved in the order of )( mnO ×  
steps, i.e. the optimal alignment may be found in polynomial time [Durbin et. al., 1998]. 

This dramatically less expensive solution is achieved by breaking the problem into 
subproblems. Only best partial alignments up to a given point are considered and then 
another pair of characters is added to the alignment, depending on what is the optimal 
extension of a given partial alignment. For the problem of the global alignment and the 
linear gap penalty considered here (with a score for aligning a residue with a gap defined as 

0  ; ),(),(s >−=−=− ddff isi αα ), the particular DP solution is known as the Needleman-
Wunsch algorithm [Needleman and Wunsch, 1990], which consists of two steps: the 
construction of the so-called DP representing possible alignments table and the trace back 
procedure to identify the optimal alignment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The DP table represents all the possible alignments. However, starting from the first 

pair of characters, only these partial alignments are traced, which proceed through locally 
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optimal extensions of partial alignments up to a given point, defined using the following 
recursive rules: 

kd,kfk,f  ,f −=== )0()0(    ;0)00( tottottot  
})1(,)1(),,()11( max{)( tottottottot di,jfd,jifbaf,jif  i,jf jis −−−−+−−= .                          (5) 

Therefore, the optimal alignment can be then traced back, starting from the lower 
right corner of the DP table, as shown in the example included in Figure 5. 

The BLOSUM50 scoring matrix (for instance 2),( −=HPf s ) and the gap penalty 
 were used in this example. Note that symbols *, ^ and < are used to indicate which of 

the three possible extensions of the alignment was optimal, corresponding to the alignment 
of an amino acids in the first sequence with an amino acid in the second sequence, a gap in 
the first sequence with an amino acid in the second sequence, or an amino acid in the first 
sequence with a gap in the second sequence, respectively.  

8=d

The above symbols represent in fact pointers that allow one to efficiently trace back 
the optimal alignment. Since the number of the cells in the DP table is  and a 
fixed number of operations per cell are required, it is easy to see that the overall complexity 
of the Needleman-Wunsch algorithm is indeed polynomial (quadratic in n assuming for 
simplicity that ) in time and space.  Further discussion of this algorithm may be found 
in [Durbin et. al., 1998]. 

)1()1( +×+ mn

mn =

There are many extensions and modifications of this basic scheme, such as the 
Smith-Waterman [Smith and Waterman, 1981] algorithm for local alignments. Dynamic 
Programming is truly ubiquitous in sequence analysis [Gibson and Muse, 2002; Pevzner, 
2000, Gusfield, 1999]. On the other hand, however, DP with its quadratic polynomial 
complexity may be computationally too expensive for large-scale applications. Therefore, 
many heuristic schemes, such as BLAST [Altschul et. al., 1997], which are more efficient but 
are not guaranteed to find the optimal solution, were devised. 

The sequence-to-structure matching may be perceived as a generalized sequence 
matching, with one of the sequences consisting of amino acids and the other of structural 
sites characterized in terms of their structural environment (e.g. the number of neighbors to 
a site). Therefore, DP techniques may be directly applied to solve efficiently the problem of 
finding optimal sequence-to-structure alignments. In light of considerations included in this 
section, however, scoring functions for efficient sequence-to-structure matching should 
enable piecewise approach and decomposition of the problem into “local” subproblems. 
This observation is the starting point for the developments summarized in the next section.  

 
I.4. Contact Potentials for Protein Recognition  

 
Protein structure is often represented in terms of simplified, reduced models that speed up 
computation. For example, the commonly used contact model represents each amino acid by 
just one point, which defines the approximate location (site) of an amino acid. The overall 
shape of a protein may be characterized in terms of contacts between closely packed amino 
acid residues, or in other words in terms of effective interactions between the structural sites 
representing amino acid residues.  

Such contact models allow one to capture the packing of hydrophobic residues that 
are buried in the core of the protein and contribute to the stability of the structure. 
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Hydrophobic residues are represented as blue circles in Figure 6, as opposed to hydrophilic 
residues that are marked in red and are predominantly found on the surface of globular 
proteins [Branden and Tooze, 1991].  

Let us consider widely used inter-residue folding potentials. In contact pairwise 
models [Sippl et. al., 1992; Bryant et. al., 1993; Godzik et. al., 1992] the energy of a protein 
with sequence S and structure  is a sum of pair energies from all pairs of interacting amino 
acids: 

X

∑∑ ==
< γ

γγβα ),();,( XzX SnzzSE
ji

ji
.                                             (6) 

The summation index, αβγ ≡ , runs over 210 different contact types, where α and β denote 
types of amino acids ( }20,...,2,1{, ∈βα ) at certain sites i and j in contact, and  denotes 
the number of contacts of a specific type found in the structure X. Thus, given the effective 
“pair energies”, αβγ  (also denoted as αβ

),( XSnγ

zz ≡ ε  throughout papers included in this 
dissertation), computing the overall energy of a structure reduces to counting of different 
types of contacts. Sites i and j are said to be in contact, if their distance, ijr , is sufficiently 
small. In this work we consider the model that was used before to optimize threading 
potentials [Tobi et. al., 2000], with geometric side chain centers as interaction sites. Two sites 
are assumed to be in contact if their distance satisfies  4.60.1 << ijr  Å, which implies that 
only neighbors from the first contact shell are taken into account. Furthermore, 4≥− ji , i.e. 
pairs of residues that are separated by fewer than four virtual bonds are excluded.  
 
  Figure 6  Reduced representations of protein structure 

Each amino acid represented by a point in the 3D space; simple c ontact  
model  – two amino acids in contact if their distance smaller than a cut off. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The effective pair energies for inter-residue interactions can be derived from the 

analysis of contacts in known structures, with γ  defined by the frequency of observing 
contacts of type 

z
γ  normalized by the so-called background frequencies [Sippl et. al., 1992]: 

]ln[
βα

αβ
αβ pp

p
Cz −= .                                                             (7) 
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Here, C is a positive constant that defines the energy scale,  denotes the probability of 
observing (in a set of native structures) amino acids of types 

αβp
α and β  in contact, whereas 

α and β denote probabilities of observing these individual amino acids (again in a set of 
native structures). Such knowledge-based, pairwise potentials are widely used in fold 
recognition [Jones et. al., 1992; Bryant et. al., 1993; Mirny and Shaknovich 1998], ab-initio 
folding [Sternberg et. al., 1999; Liwo et. al., 1997; Xia et. al., 2000] and sequence design 
[Babajide et. al., 1997, 1999]. Alternative strategies to find the effective pair energies 
(parameters of folding potentials in general) are discussed below. 

p p

It is important to realize that such simplified models incorporate the interactions with 
the solvent in terms of the effective pair energies. Proteins adopt their three-dimensional 
conformations in specific environments. Soluble proteins fold in an aqueous environment, 
whereas membrane proteins fold in a lipid environment. Thus, effective pair energies must 
be derived separately for different environments in order to account for the observed (in a 
given environment) structure. 

 
Figure 7. A novel contact model for protein recognition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

As an alternative to pairwise contact models, one may consider the so-called “profile” 
models [Bowie et. al., 1991; Elofsson et. el., 1998], in which the overall effective energy of a 
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protein takes the form of a sum of individual site contributions, depending on the structural 
environment of a site. For example, the solvation or burial state or the secondary structure 
can be used to characterize different local environments. 

 The advantage of profile models is the simplicity of finding optimal alignments with 
gaps 

to 
exact a

A number of heuristic algorithms, providing approximate alignments, have been 
propo

 (also denoted as  in 
some act betwe

(deletions and insertions into the aligned sequence) that allow the identification of 
homologous proteins of different length. As discussed in the previous section, using DP 
algorithm one may compute optimal alignments with gaps in polynomial time, as compared 
to the exponential number of all possible alignments, if a “local” scoring function is used.  

In contrast to profile models, the potentials based on pair energies do not lead 
lignments with dynamic programming. The reason for that may be explained by 

considering how a score for aligning an amino acid residue with a structural site is computed 
when using pairwise potentials. Namely, all contacts to a site need to be considered, each 
contributing an effective pair energy that is dependent on the identity of the “other” amino 
acid in contact. However, the placement of gaps (i.e. the alignment) may change the identity 
of the “other” residues and the problem becomes non-local (NP-complete in fact [Lathrop, 
1994]). 

   
sed, e.g. [Lathrop and Smith, 1996]. However, they cannot guarantee an optimal 

solution with less than exponential number of operations. We introduced a novel energy 
function that employs reduced, contact models of protein structure and blends the contact 
energies with profile models to achieve computational efficiency and higher accuracy in 
recognition of native-like structures [Meller and Elber, 2002]. The new model is called 
THreading Onion Model 2 (THOM2) since it uses information about the first and the 
second contact shells of an amino acid residue and it incorporates some cooperativity effects 
that are not included in standard pairwise folding potentials.  

In THOM2 one defines the effective energy ),( ji nnz
iα

),( ji nn
iα

ε
of the figures and papers included here, see Fig  example) of a cont en 

structural sites i and j, where in  is the number of neighbors to site i and jn  is the number of 
neighbors to site j. The type of amino acid at site i  is i

ure 7 for

α . Only one of the amino acids in 
contact is known. The total contribution to the energy of site i is a sum over all contacts to 
this site ),()(THOM2, ji

j
ii nnz

iα
αφ ∑=, 'X . The prime indicates that we sum only over sites j that 

are in con  is defined as previously for pairwise models. The total 
energy is finally given by a double sum over i and j, 

∑∑= nnzE ,('

tact with i, where contact

i
)2 α  .                                                       (8) 

As was the case for pairwise models defined before, computing the overall energy of a 

j
ji

i
THOM

structure reduces to the counting of different types of contacts, ),( XSnγ , which are however 
defined in terms of the number of neighbors to sites involved in contact and identity of the 
amino acid occupying the “primary” site. Therefore, we may express the overall energy as 
linear combination with respect to the parameters γz : 

∑= ,);,(2 XzX nzSETHOM
γ

γγ )(S ,                                                   (9) 

where the summation index is defined now in terms of the amino acid type occupying the 
primary site, its number of neighbors and the number of neighbors to the other site involved 
in contact, ),,( jii nnαγγ ≡ . We use a coarse-grained model leading to a reduced set of 
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structural en ypes of contacts) by merging residues with similar number of 
neighbors into several classes. Therefore, the number of parameters, which might be very 
large in principle (assuming up to ten neighbors to a site we would obtain 2000101020

vironments (t

=××  
parameters), is reduced to a number comparable with 210 parameters of the pairwise m  
(see Paper 1 for details).  

Since each contact 

odel

contributes twice to the overall energy, it is possible to define an 
effect

ij ji αα                                        (10) 

Hence, one can formally express the THOM2 energy as a sum of pair energies,  

ijTHOM 2              (11) 

The effective energy mimics the formalism of pairwise interactions. However, in contrast to 

computed 
using s

pect to 
misfold

several scoring functions (including 
THOM

inequalitie

n both ab-initio folding and protein recognition we are faced with the problem of finding 

ive pair energy using THOM2 as well (see also Figure 7): 

                                      ),(),(eff nnznnzV +=  .       ijji

                                                 ∑= effVE .                                                   
< ji

the usual pair potential, the optimal alignments with gaps can be computed efficiently with 
THOM2, since structural features alone determine the “identity” of the neighbor.  

The energy terms (parameters of the potentials), ),( ji nnz
iα

, could be 
tatistical approach for example, in analogy to knowledge based pairwise potentials 

defined in equation (7). However, such statistical potentials “learn” from the native 
structures (“good” examples) only. In order to increase their power to distinguish misfolded 
states (the “bad” examples) from native states, more sophisticated protocols incorporate 
data from decoy structures as well. One approach to designing potentials that improves 
upon statistical potentials is the so-called Z-score optimization, discussed in Paper 3. 

 Here, in order to achieve better discrimination of native structures with res
ed decoys, we explicitly demand that the folding potentials mimic the postulate that 

the native states have the lowest energy. Such formulation leads to a problem of solving 
linear system of inequalities, which we chose to solve using Linear Programming techniques 
(for an overview of LP and other techniques and algorithms for solving linear systems of 
inequalities the reader is referred to [Vanderbei, 1996]). 

We used LP methods to design and evaluate 
2) for threading and to optimize their parameters. For example, the site energies 

),( ji nnz
iα

 are optimized using the LP protocol to find a solution of a large set of linear 
s derived from a large set of native and misfolded structures as described in the 

next section. LP is also used to determine optimal gap penalties. The new model provided an 
efficient threading approach for annotations of remote homologs that share structural 
similarity without significant sequence similarity. Applications of this approach are presented 
in papers included in Part III of this dissertation. 
 

I.5.  LP Approach to the Design of Folding Potentials 
 
I
(designing) an appropriate expression for the free energy or scoring function (also called 
here folding potentials), respectively. The basic requirement for protein folding potentials is 
their ability to distinguish native-like from non-native structures. This can be achieved by an 
appropriate choice of the functional form and parameters of the energy function (in the 
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following we will use the “physical” convention according to which well folded structures 
are expected to yield low energies, as opposed to high scores when using scoring functions). 

Assuming that folding potentials are expected to have the lowest energy for the 
native fold, one may impose that for each pair of native and misfolded structures that are 
considered the following constraints are satisfied: 

                                nativemisfoldednat mis ε≥−≡∆ EEE ,  .                                                      (12) 

Here,  is the energy of the native structure nat , z is the vector of 
parameters to be optimized, 

);,(native zX natSEE ≡ X
);,(misfolded zX misSEE ≡  represents the energies of the misfolded 

(non-native) structures mis  and X ε  is a positive constant. In other words, we require that the 
energies of native structures are lower than the energies of misfolded structures.  

It should be noted that casting the problem of designing folding potentials in terms 
of optimization of the parameters z, such that correct recognition (classification) of a set of 
examples (pairs of native and misfolded structures) is imposed in the training, implies that 
the problem is in fact formulated within the framework of the supervised classification 
approach. Obviously, as with any other supervised classification protocol, the choice of 
training set of examples and further validation of the results on independent control sets is 
critical for the successful optimization of folding potentials. Discussion of different issues 
involved in making these critical choices is included in Paper 2. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Recognition of native structures by folding potentials 
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For energy models considered here, such as the contact potentials defined in (6) and 
(9), one may in general expand the energy as linear combination in terms of their parameters: 

∑=
γ

γγα ),();,( XzX SzSE ,                                                   (13) 

with the coefficients of the linear combination, ),( XSγα , taking a model specific (structure 
and sequence dependent) form. In such case, the set of inequalities in equation (12) that 

 22


