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Problems and methods:Problems and methods:

Problem   Algorithms Programs

Sequencing Fragment assembly problem The Shortest 
Superstring Problem Phrap (Green, 1994)

Gene finding Hidden Markov Models, pattern recognition methods 
GenScan (Burge & Karlin, 1997)

Sequence comparison pairwise and multiple sequence alignments 
dynamic algorithm, heuristic methods BLAST (Altschul et. al., 
1990)
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Trying out the routine BLAST Trying out the routine BLAST 
searches:searches:

Let us BLAST some sequences …
NCBI HomePage.htm

Scoring matrix (BLOSUM62 etc.), PSSM and 
PsiBLAST, gap penalties, Smith-Waterman vs. 
heuristic alignment, repeats filtering, p-value, E-
value, B-value …

Why homology is so useful?
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Sequence similarity is at the core of Sequence similarity is at the core of 
computational biology …computational biology …

DNA/RNA/Protein machinery: from sequence to 

sequence to structure to function to sequence,

High sequence similarity implies usually significant 

functional and/or structural similarity,

Profiles and multiple alignments methods such as 

PsiBLAST are significantly more sensitive (with very 

high specificity) than pairwise sequence alignments.
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What do we need to measure similarity What do we need to measure similarity 
between sequences?between sequences?

A similarity measure: substitution (or scoring) 
matrices, such as PAM or BLOSUM matrices.

An alignment algorithm: dynamic programming 
generates an optimal (approximate) string matching in 
quadratic time, still to slow? – use faster heuristics!

A statistical significance measure to filter our well 
scoring matches by chance: extreme value 
distribution and various estimates of statistical 
confidence.
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Deriving substitution matrices from Deriving substitution matrices from 
known protein families:known protein families:

PAM matrices (Dayhoff et. al): extrapolating longer 
evolutionary times from data for very similar proteins with 
more than 85% sequence identity (short evolutionary 
time),

s(a,b | t) = log P(b|a,t)/qa e.g.   P(b|a,2)= Σc P(b|c,1)P(c|a,1)

BLOSUM matrices (Henikoff & Henikoff): multiple 
alignments of more distantly related proteins (e.g. 
BLOSUM50 with 50% sequence identity),

s(a,b) = log pab/qaqb where    pab= Fab / Σcd Fcd

Expected score:   Σab qaqb s(a,b) = - Σab qaqb log qaqb / pab = -H(q||p)
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Example (BLOSUM50):Example (BLOSUM50):
H E A G A W G H E

P -2 -1 -1 -2 -1 -4 -2 -2 -1

A -2 -1 5 0 5 -3 0 -2 -1

-3

0

6

W -3 -3 -3 -3 -3 15 -3 -3

H 10 0 -2 -2 -2 -3 -2 10

E 0 6 -1 -3 -1 -3 -3 0

d = 8
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Multiple alignment (family profiles) and Multiple alignment (family profiles) and 
Position Specific Scoring Matrices …Position Specific Scoring Matrices …
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Gap penalties Gap penalties –– evolutionary and evolutionary and 
computational considerations:computational considerations:

Linear gap penalties:

γ(g) = - g d  for a gap of length g and constant d.

Affine gap penalties:

γ(g) = - d – (g -1) e   ,

where d is opening gap penalty and e an extension 
gap penalty.
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Dynamic programming algorithm:Dynamic programming algorithm:

Goal – find an optimal matching for two strings S1 = 
a1a2…an and S2 = b1b2…bm over certain alphabet Σ, 
given a scoring matrix s(a,b) for each a and b in Σ and 
(for simplicity) a linear gap penalty .

Relation to minimal edit distance (number of insertions, 
deletions and substitutions) problem.

Three stages: recurrence relation, tabular computation 
and traceback.
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Recurrence relations:Recurrence relations:

Global alignment (Needleman-Wunsch):

F(0,0) = 0; F(k,0) = F(0,k) = - k d;

F(i,j) = max { F(i-1,j-1)+s(ai,bj) ; F(i-1,j)-d ; F(i,j-1)-d }

Local alignment (Smith-Waterman):

F(0,0) = 0; F(k,0) = F(0,k) = 0;

F(i,j) = max { 0 ; F(i-1,j-1)+s(ai,bj) ; F(i-1,j)-d ; F(i,j-1)-d }
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Building DP table and finding the Building DP table and finding the 
optimal alignment:optimal alignment:

Use the recurrence relations, starting from the 
left upper corner (convention).

Find the highest score in the DP table (last, 
bottom right cell in the global alignment by 
definition)

Trace back the alignment using the pointers in 
the DP graph that show how the best local 
steps led to the best overall alignment.
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Examples (global alignment):Examples (global alignment):
H E A G A W G H E

0 <-8 <-16 <-24 <-32 <-40 <-48 <-56 <-64 <-72

P ^-8 *-2 *-9 *-17 <-25 *-33 <-41 <-49 <-57 *-65

A ^-16 ^-10 *-3 *-4 <-12 *-20 <-28 <-36 <-44 <-52

W ^-24 ^-18 ^-11 *-6 *-7 *-15 *-5 <-13 <-21 <-29

H ^-32 *-14 *-18 *-13 *-8 *-9 ^-13 *-7 *-3 <-11

E ^-40 ^-22 *-8 <-16 ^-16 *-9 *-12 ^-15 *-7 *3

HEAGAWGHE

--P-AW-HE
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Examples (local alignment):Examples (local alignment):
H E A G A W G H E

0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0

A 0 0 0 *5 0 *5 0 0 0 0

W 0 0 0 0 *2 0 *20 <12 <4 0

H 0 *10 <2 0 0 0 ^12 *18 *22 <14

E 0 ^2 *16 <8 0 0 ^4 ^10 *18 *28

AWGHE

AW-HE
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Why it works?Why it works?
All the possible alignments (with gaps) are 
represented in the DP table (graph).

The score is a sum of independent piecewise scores, 
in particular, the score up to a certain point is the best 
score up to the point one step before plus the 
incremental score of the new step.

Once the best score in the DP table is found the trace 
back procedure generates the alignment since only 
the best “past” leading to the present score is 
represented by the pointers between the cells.
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Why it works?Why it works?
All the possible alignments (with gaps) are represented in 
the DP table (graph). Consider an example with two 
strings of length 2 and complete enumeration of all 
possible alignments: 

a1 a2

b1

b2

|   b1a1b2a2
\ _ 0 1 1

\ a1b1a2b2
\

1

1

3

|         _ _     |_    _   |_ _    _
|_ _         |       |_   |_      |     |        b1b2a1a2

|               |            |_

|_        _      
\ |      b1a1a2b2

\

5_  a1a2b1b2
\
| 5 13

\ \ _      
|_          |      a1b1b2a2
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Def.
A sequence of length n+m, obtained by intercalating two 
sequences S1 = a1a2…an and S2 = b1b2…bm , while preserving 
the order of the symbols in S1 and S2 , is called an intercalated 
sequence (denoted by S1/2).
Def.
Two alignments are called redundant if their score is identical. 
The relationship of “having the same score” may be used to 
define equivalence classes of non-redundant alignments. For 
example, the class a1b1b2a2:

\ \ _                                    a1-a2     a1a2-
|_          |      a1b1b2a2   b1b2- ; b1-b2
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Lemma.
There is one-to-one correspondence (bijection) between the set of non-redundant 
gapped alignments of two sequences S1 and S2 and the set of intercalated 
sequences {S1/2}.
Corollary.
The number of non-redundant gapped alignments of two sequences, of length n 
and m, respectively, is equal to (n+m)!/[m!n!].
Proof.
Since the order of each of the sequences is preserved when intercalating them, 
we have in fact n+m positions to put m elements of the second sequence (once 
this is done the position of each of the elements of the first sequence is fixed 
unambiguously). Hence, the total number of intercalated sequences S1/2 is given 
by the number of m-element combinations of n+m elements and the corollary is 
a simple consequence of the one-to-one correspondence between alignments and 
intercalated sequences stated in the lemma. QED
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Ex.
Consider for simplicity two sequences of the same length. Using 
the Stirling formula (x! ~ (2π)1/2 xx+1/2 e-x ) show that
(n+n)!/[n!n!] ~ 22n / (2πn)1/2

Note that for a ridiculously small by biology standards length of 50 
we already have about 1030 basic operations to perform an 
exhaustive search, making the naïve approach infeasible.

Dynamic programming provides in polynomial time an optimal solution 
for a class of potentially exponentially scaling problems. However, the 
traveling salesman (and other NP-complete problems) cannot be solved
by dynamic programming because the cost of local decisions depends on
the overall trajectory (or path on the DP graph). Pairwise contact 
potentials in sequence-to-structure matching result in the same problem.
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Assigning fold and function utilizing similarity Assigning fold and function utilizing similarity 
to experimentally characterized proteins:to experimentally characterized proteins:

Sequence similarity: BLAST 
and others

Beyond sequence similarity: 
matching sequences and 
shapes (threading)



Reduced representation of protein structureReduced representation of protein structure

Each amino acid represented by a point in the 3D space; simple contact 
model – two amino acids in contact if their distance smaller than a cutoff.
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Because of the non-local character of scores due to a 

given structural site, finding an optimal alignment with 

gaps using pairwise models of the energy:

E =  Σ k< l ε k l   ,

is NP-hard!

R.H. Lathrop, Protein Eng. 7 (1994)
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Why it works?Why it works?
The score is a sum of independent piecewise 
scores, in particular, the score up to a certain 
point is the best score up to the point one step 
before plus the incremental score of the new 
step.

F(i-1,j-1) F(i-1,j)

F(i,j-1)
(i,j)

aj - aj
bi  ; bi ; -
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An argument instead of a proof.
We know already that all the possible alignments are included in 
the DP graph (each path defines one alignment, some of them 
redundant with respect to the score). What we need to consider 
now is if the path found using DP recurrence relations and tracback
procedure is indeed optimal, i.e. it maximizes the score.

In case of global alignment each path starts at cell (0,0) and must end at cell 
(n,m). Consider the latter cell and the immediate past that led to it through 
one (most favorable together with the cost of the incremental step) of the 3 
neighboring cells. Changing the last step (e.g. from initially chosen, optimal 
diagonal step) to an alternative one does not affect the scores at the 
preceding cells that represent the best trajectory up to this point. Clearly we 
get suboptimal solution if we assume that optimal solutions have been 
found in the previous steps. Hence, formalizing this argument we get proof 
by induction with reductio ad absurdum.
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Examples (global alignment):Examples (global alignment):
H E A G A W G H E

0 <-8 <-16 <-24 <-32 <-40 <-48 <-56 <-64 <-72

P ^-8 *-2 *-9 *-17 <-25 *-33 <-41 <-49 <-57 *-65

A ^-16 ^-10 *-3 *-4 <-12 *-20 <-28 <-36 <-44 <-52

W ^-24 ^-18 ^-11 *-6 *-7 *-15 *-5 <-13 <-21 <-29

H ^-32 *-14 *-18 *-13 *-8 *-9 ^-13 *-7 *-3 <-11

E ^-40 ^-22 *-8 <-16 ^-16 *-9 *-12 ^-15 *-7 *3

HEAGAWGHE

--P-AW-HE
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Examples (local alignment):Examples (local alignment):
H E A G A W G H E

0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0

A 0 0 0 *5 0 *5 0 0 0 0

W 0 0 0 0 *2 0 *20 <12 <4 0

H 0 *10 <2 0 0 0 ^12 *18 *22 <14

E 0 ^2 *16 <8 0 0 ^4 ^10 *18 *28

AWGHE

AW-HE
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Reduction of complexity:Reduction of complexity:

Naïve search - ~ 22n

DP search – O(n2)

Global optimization problem solved in 
polynomial time for specific (local or piecewise, 
pairwise scoring function).

For large scale comparisons heuristic methods 
that find approximate solutions are used, e.g. 
BLAST. 
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Approximate, heuristic solutions may Approximate, heuristic solutions may 
be nearly as good and much faster …be nearly as good and much faster …

BLAST approach: gapless seeds (High Scoring Pairs 
with well defined confidence measures), DP extensions: 
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Statistical verification of predictions:Statistical verification of predictions:

Scoring according to an energy may be 
insufficient (e.g. need to validate good matches 
due to similar length or composition).

Z-score: a convenient measure of the strength 
of a match in terms of distribution of energies 
for random alignments.

Such distribution is not normal !!
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Distribution of Z-scores for false positives

Z= -(E-<E>)/σ
Dashed line - fit to a normal 
distribution

Solid line - fit to an extreme 
value distribution:

p(Z)=exp(-Z’-exp(-Z’))/σ

Z’=(Z-a)/σ
From analytical fit we get for 
example that P(Z>4)=0.003
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Multiple alignment problem:Multiple alignment problem:
DP search gives optimal solution scaling 
exponentially with the number of sequences K, 
O(nK), not practical for more than 3,4 sequences.

Standard heuristics start from pairwise alignments 
(e.g. PsiBLAST, Clustalw)

Hidden Markov Model approach to family profiles 
(profile HMM) as an alternative with pre-fixed 
parameters, trained separately for each family. 
Some initial multiple alignments necessary for 
training.
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Summary:Summary:
Problem of finding an optimal alignment of two 
sequences results in a global optimization problem 
that is solved by the dynamic programming algorithm 
in polynomial time for specific (local) scoring function 
and piecewise decomposable problem.

For large scale comparisons heuristic methods that 
find approximate solutions are used, e.g. BLAST. 

DP is GREAT !!DP is GREAT !!
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From a simple example to From a simple example to 
probabilistic linguistic models:probabilistic linguistic models:
a very brief introduction to Hidden a very brief introduction to Hidden 
Markov ModelsMarkov Models

From speech recognition From speech recognition 
to gene and protein families recognition.to gene and protein families recognition.
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HMM’sHMM’s and their applications:and their applications:
Problems with grammatical structure, such as gene 
finding, family profiles and protein function prediction, 
transmembrane protein fragments prediction

In general, one may think of different biases in different 
fragments of the sequence (due to functional role for 
example) or of different states emitting these fragments 
using different probability distributions



9/14/2004 35

Probabilistic models of biological Probabilistic models of biological 
sequences:sequences:

For any probabilistic model the total probability of 
observing a sequence a1a2…an may be written as:

P(a1a2…an) = P(an| an-1… a1) P(an-1| an-2… a1) … P(a1)

In Markov chain models we simply have:

P(a1a2…an) = P(an| an-1) P(an-1| an-2) … P(a1)

HMM’s are different from Markov chain models since 
some “hidden” states that “emit” sequence symbols are 
introduced.
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Probabilistic models of biological Probabilistic models of biological 
sequences:sequences:

HMM’s may be in fact regarded as probabilistic, finite 
automata that generate certain “languages”: sets of 
words (sentences etc.) with specific “grammatical” 
strcuture. 

For example, promotor, start, exon, splice junction, 
intron, stop “states” will appear in a linguistic model of 
a gene, whereas column (sequence position), insert 
and deletion states will be employed in a linguistic 
model of a (protein) family profile.
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Biologically relevant example: simple Biologically relevant example: simple 
profile HMM.profile HMM.

ACA---ATG

TCAACTATC

ACAC--AGC

AGA---ATC

ACCG--ATC

Grep approach to motif search: find the following 
regular expression: [AT][CG][AC][ACGT]*A[TG][GC]

Importance of finite automata in string parsing and 
searching.
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Biologically relevant example: simple Biologically relevant example: simple 
profile HMM.profile HMM.

P(ACACATC)=.8*1*.8*1*.8*.6*.4*.6*1*1*.8*1*.8=0.047
Probability in random model Q(ACACATC)=(1/4)7 Score=log(P/Q)
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C
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A 
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T .2
G 

A .8
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T 
G 

A 1.
C
T 
G 

A 
C
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A 
C .8
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G A .2

C .4
T .2
G .2

0.4
1.0 1.0

0.6

1.01.0
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0.4



9/14/2004 39

Profile (and other) HMM method(s):Profile (and other) HMM method(s):
Given a training set of aligned sequences maximize 
probability of observing the training sequences, choosing 
appropriate transition and emission probabilities –
Expectation Maximization algorithm

In recognition phase, having the optimized probabilities, 
we ask what is the likelihood that a new sequence 
belongs to a family i.e. it is generated by the HMM with 
sufficiently high probability. The Viterbi algorithm, which 
is fact another incarnation of dynamic programming in a 
suitable formulation, is used to find an optimal path 
through the states, which defines in this case alignment
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