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ABSTRACT The design of scoring functions (or
potentials) for threading, differentiating native-like
from non-native structures with a limited computa-
tional cost, is an active field of research. We revisit
two widely used families of threading potentials: the
pairwise and profile models. To design optimal scor-
ing functions we use linear programming (LP). The
LP protocol makes it possible to measure the diffi-
culty of a particular training set in conjunction with
a specific form of the scoring function. Gapless
threading demonstrates that pair potentials have
larger prediction capacity compared with profile
energies. However, alignments with gaps are easier
to compute with profile potentials. We therefore
search and propose a new profile model with compa-
rable prediction capacity to contact potentials. A
protocol to determine optimal energy parameters
for gaps, using LP, is also presented. A statistical
test, based on a combination of local and global
Z-scores, is employed to filter out false-positives.
Extensive tests of the new protocol are presented.
The new model provides an efficient alternative for
threading with pair energies, maintaining compa-
rable accuracy. The code, databases, and a predic-
tion server are available at http://www.tc.cornell.edu/
CBIO/loopp. Proteins 2001;45:241–261.
© 2001 Wiley-Liss, Inc.
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INTRODUCTION

The threading approach1–8 to protein recognition is an
alternative to the sequence-to-sequence alignment. Rather
than matching the unknown sequence Si to another se-
quence Sj (one-dimensional [1D] matching), we match the
sequence Si to a shape Xj (three-dimensional [3D] match-
ing). Experiments found a limited set of folds compared
with a large diversity of sequences, suggesting the use of
structures to find remote similarities between proteins.
Thus, the determination of overall folds is reduced to tests
of sequence fitness into known and limited number of
shapes.

Sequence-to-structure compatibility is commonly evalu-
ated using reduced representations of protein structures.
Points in 3D space represent amino acid residues, and an
effective energy of a protein is defined as a sum of
interresidue interactions. The effective pair energies can

be derived from the analysis of contacts in known struc-
tures. Such knowledge-based pairwise potentials are widely
used in fold recognition,2,3,6,9–11 ab initio folding,11–13 and
sequence design.14,15

Alternatively, one may define the so-called “profile”
energy,1,5,16 taking the form of a sum of individual site
contributions, depending on the structural environment of
a site. For example, the solvation/burial state or the
secondary structure can be used to characterize different
local environments. The advantage of profile models is the
simplicity of finding optimal alignments with gaps (dele-
tions and insertions into the aligned sequence) that permit
identification of homologous proteins of different length.
Using the dynamic programming (DP) algorithm,17–20

optimal alignments with gaps in polynomial time can be
computed, as compared with the exponential number of all
possible alignments.

In contrast to profile models, the potentials based on
pair energies do not lead to exact alignments with dynamic
programming. A number of heuristic algorithms, provid-
ing approximate alignments, have been proposed.21 How-
ever, they cannot guarantee an optimal solution with a
less than exponential number of operations.22 Another
common approach is to approximate the energy by a profile
model, the so-called frozen environment approximation
(FEA), and to perform the alignment using DP.23

In this article, we evaluate several different scoring
functions for sequence-to-structure alignments, with pa-
rameters optimized by linear programming (LP).24–26 The
capacity of the energies is explored in terms of a number of
protein shapes that are recognized with a certain number
of parameters. We propose a novel profile model, designed
to mimic pair energies, which is shown to have accuracy
comparable to that of other contact models. We discuss gap
energies and introduce a double Z-score measure (from
global and local alignments) to assess the results. The
proposed threading protocol emphasizes structural fitness
(as opposed to sequence similarity) and can be made a part
of more complex fold recognition algorithms that use
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family profiles, secondary structures, and other patterns
relevant for protein recognition.

THEORY AND COMPUTATIONAL PROTOCOLS
Functional Form of the Energy

In this section, we formally define the families of pair-
wise and profile models. We also introduce a novel thread-
ing onion model (THOM), which is investigated in subse-
quent sections. In the widely used pairwise contact model,
the score of the alignment of a sequence S into a structure
X is a sum of all pairs of interacting amino acids:

Epairs 5 O
i , j

fij~ai, bj, rij! (1)

The pair interaction model fij depends on the distance
between sites i and j and on the types of the amino acids, ai

and bj. The latter are defined by the alignment, as certain
amino acid residues are placed in sites i and j, respectively.

Let us consider the widely used contact potential. If the
geometric centers of the side-chains are closer than 6.4 Å;
the two amino acids are then considered in contact. The
total energy is a sum of the individual contact energies:

fij~ai, bj, rij! 5 H εab 1.0 , rij , 6.4 Å
0 otherwise J (2)

where i, j are the structure site indices (contacts due to
sites in sequential vicinity are excluded, i 1 3 , j), a, b
are indices of the amino acid types (we drop subscripts i
and j for convenience) and εab is a matrix of all the possible
contact types. For example, it can be a 20 3 20 matrix for
the 20 amino acids. Alternatively, it can be a smaller
matrix if the amino acids are grouped together to fewer
classes. Different groups used in the present study are
summarized in Table I. The entries of εab are the target of
parameter optimization.

The second type of energy function assigns “environ-
ment,” or a profile, to each of the structural sites.1 The
total energy Eprofile is written as a sum of the energies of
the sites:

Eprofile 5 O
i

fi~ai, X! (3)

As previously, ai denotes the type of an amino acid that
was placed at site i of X. For example, if ai is a hydrophobic
residue, and xi is characterized as a hydrophobic site, the

energy fi(ai, X) will be low (high score). If ai is charged, the
energy will be high (low score). The total score is given by a
sum of the individual site contributions.

We consider two profile models. In threading onion
model 1 (THOM1), which was used in the past as an
effective solvation potential,1,2 the total energy of the
protein is a direct sum of the contributions from structural
sites and can be written as

ETHOM1 5 O
i

εai~ni! (4)

The energy of a site depends on two indices: (1) the number
of neighbors to the site—ni (a neighbor is defined by a
cutoff distance—eq. 2); and (2) the type of the amino acid
at site i—ai. For 20 amino acids and a maximum of 10
neighbors, we have 200 parameters to optimize, a number
comparable to that of the detailed pairwise model.

THOM1 provides a nonspecific interaction energy, which
has relatively low prediction ability as compared with
pairwise interaction models (see section, Application to
Potential Design and Analysis). Threading onion model 2
(THOM2) attempts to improve the accuracy of the environ-
ment model, making it more similar to pairwise interac-
tions.

We define the energy εai
(ni, nj) of a contact between

structural sites i and j, where ni is the number of neighbors
to site i, and nj is the number of neighbors to site j. The
type of amino acid at site i is ai. Only one of the amino acids
in contact is known. The total contribution to the energy of
site i is a sum over all contacts to this site

fi,THOM2~ai, X! 5 O
j

9εai~ni, nj!

The prime indicates that we sum only over sites j that are
in contact with i (i.e., over sites j satisfying the condition
1.0 , rij , 6.4 Å and ui 2 ju $ 4). The total energy is
finally given by a double sum over i and j:

ETHOM2 5 O
i

O
j

9εai~ni, nj! (5)

It is possible to define an effective contact energy using
THOM2:

Vij
eff 5 εai~ni, nj! 1 εaj~nj, ni! (6)

TABLE I. Definitions of Different Groups of Amino Acids
Used in the Present Study*

Hydrophobic (HYD) ALA CYS HIS ILE LEU MET PHE PRO TRP TYR VAL

Polar (POL) ARG ASN ASP GLN GLY LYS SER THR
Charged (CHG) ARG ASP GLU LYS
Negatively charged (CHN) ASP GLU

*Note that 10 types of amino acids are found to be sufficient to solve the Hinds–Levitt set either
by pairwise interaction models or by THOM2. The amino acid types are HYD POL CHG CHN
GLY ALA PRO TYR TRP HIS. The list implies that when an amino acid appears explicitly, it is
excluded from other groups that may contain it. For example, HYD includes in this case CYS,
ILE, LEU, MET, and VAL, while CHG includes ARG and LYS only, since the negatively
charged residues form a separate group.
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Hence, we can formally express the THOM2 energy as a
sum of pair energies

ETHOM2 5 O
i , j

Vij
eff

The effective energy mimics the formalism of pairwise
interactions. However, in contrast to the usual pair poten-
tial, the optimal alignments with gaps can be computed
efficiently with THOM2, as structural features alone deter-
mine the “identity” of the neighbor.

We use a coarse-grained model that leads to a reduced
set of structural environments (types of contacts), as
outlined in Table II. The use of a reduced set makes the
number of parameters (300 when all 20 types of amino
acids are considered) comparable to that of the contact
potential. Further analysis of the new model is included in
the section, Application to Potential Design and Analysis.

Linear Programming Protocol for Optimization of
the Energy Parameters

Consider the alignment of a sequence S of length n, into
a structure X of length m. In order to optimize the energy
parameters for the amino acid interactions (the gap ener-
gies are discussed in the section, Protocol for Optimization
of Gap Energies), we employ the so-called gapless thread-
ing, in which sequence S is fitted into the structure X with
no deletions or insertions. Hence, the length of the se-
quence must be shorter than, or equal to, the length of the
protein chain. If n is shorter than m, we may try m 2 n 1
1 possible alignments varying the structural site of the
first residue (and the following sequence).

The energy (score) of the alignment of S into X is denoted
by E(S, X, p), where X stands (depending on the context)
either for the whole structure or only for a substructure of
length n. The energy function E(S, X, p) depends on a
vector p of q parameters (thus far undetermined).

Consider the sets of structures {Xi} and sequences {Sj}.
There is an energy value for each of the alignments of the
sequences {Sj} into the structures {Xi}. A good potential
will make the alignment of the “native” sequence into its
“native” structure the lowest in energy. Let Xn be the
native structure. A condition for an exact recognition is

E~Sn, Xj, p! 2 E~Sn, Xn, p! . 0 ; j Þ n (7)

In the set of inequalities (Eq. 7), the coordinates and
sequences are given, and the unknowns are the parame-
ters we need to determine.

The LP protocol makes it possible to measure the
difficulty of a training set. The number of parameters of
the energy function necessary to satisfy all the inequalities
is derived from the set of structures, as defined in eq. 7.
Whereas the statistical potentials are based on the analy-
sis of native structures only, the LP protocol is using
sequences threaded through misfolded structures during
the process of learning. As a result, the LP has the
potential for accumulating more information, in an at-
tempt to place the energies of the misfolded sequence as
far as possible from the energy of the native state. In fact,
the LP protocol can be used to optimize the Z-score of the
distribution of energy gaps.27 In the remainder of this
section, we describe the technique to solve the inequalities
of eq. 7.

The “profile” and pairwise interaction models considered
in this work can be written as a scalar product:

E 5 O
g

ng~X!pg ; n~X! z p (8)

where p is the vector of parameters we wish to determine.
The index of the vector g, is running over the types of
contacts or sites. For example, in the pairwise interaction
model, the index g denotes the types of the amino acid
pairs, whereas in THOM1, it denotes the types of sites
characterized by the identity of the amino acid at the site
and the number of its neighbors. ng(X) is the number of
contacts, or sites of a specific type found in the structure X.

Using the representation of eq. 8, we may rewrite eq. 7
as follows:

p z Dnj 5 O
g

pg@ng~Xj! 2 ng~Xn!# . 0 ; j Þ n (9)

Standard linear programming tools can solve Eq. 9 for p.
We use the BPMPD program of Meszaros,28 which is based
on the interior point algorithm. In the present computa-
tions, we seek a point in parameter space that satisfies the
constraints, and we do not optimize a function in that
space. Without a function to optimize the interior point,
the algorithm places the solution at the “maximally fea-
sible” point, which is at the analytic center of the feasible
polyhedron that defines the “accessible” volume of parame-
ters.27,29

The set of inequalities that we wish to solve includes
tens of millions of constraints that could not be loaded
directly into the computer memory (we have access to
machines with 2–4 Gigabytes [Gb] of memory). Therefore,

TABLE II. Definitions of Contact Types for the
THOM2 Energy Model*

Type of site n9 5 1,2; 1# n9 5 3,4,5,6; 5# n9 $ 7; 9#

n 5 1,2; 1# (1#,1#) (1#,5#) (1#,9#)
n 5 3,4; 3# (3#,1#) (3#,5#) (3#,9#)
n 5 5,6; 5# (5#,1#) (5#,5#) (5#,9#)
n 5 7,8; 7# (7#,1#) (7#,5#) (7#,9#)
n $ 9; 9# (9#,1#) (9#,5#) (9#,9#)

*There are 15 types of energy terms in THOM2 that are based on
contacts in the first and the second contact layers. A contact between
two amino acids is “on” if the distance is ,6.4 Å. We consider five types
of sites in the first layer and three in the second layer. Thus, there are
20 3 15 5 300 different energy terms for 20 different amino acids. A
reduced set of amino acids is associated with a smaller number of
parameters to optimize (for 10 types of amino acids, the number of
parameters is 10 3 15 5 150). The notation we used for each type
of site is based on a representative number of neighbors. The number
of neighbors n in a given class and its representative are given in
the first column (for different classes of sites in the first layer) and in
the first row (for different classes of sites in the second layer). The
intersections between columns and rows correspond to contacts of
different types: a contact between two sites of medium number of
neighbors is denoted by (5# ,5# ), for example.
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the following heuristic approach was used. Only a subset
of the constraints is considered:

$p z Dn , C%j 5 1
J

where the threshold of C is chosen to restrict the number of
inequalities to a manageable size (;500,000 inequalities
for 200 parameters). Hence, during a single iteration, we
considered only the inequalities that are more likely to be
relevant for further improvement by being smaller than
cutoff C. This subset is sent to the LP solver “as is.” If
proven infeasible, the calculation stops (no solution pos-
sible). Otherwise, the result is used to test the remaining
inequalities for violations of the constraints (Eq. 9). If no
violations are detected, the process is stopped (a solution
was found). If negative inner products are found in the
remaining set, a new subset of inequalities below C is
collected. The process is repeated, until it converges.
Sometimes convergence is difficult to achieve, necessitat-
ing human intervention in the choices of the inequalities.
For example, mixing subsets of inequalities from previous
runs with the lowest inequalities obtained with the new
parameters helps avoid the problem of “oscillating” be-
tween solutions.

Protocol for Optimization of Gap Energies

In this section, we discuss the derivation of the energy
terms for gaps and deletions that enable the detection of
homologs. We introduce an “extended” sequence, S# , which
may include gap “residues” (spaces, or empty structural
sites) and deletions (removal of an amino acid, or an amino
acid placed at a virtual structural site).

The gap residue, —, is considered another amino acid.
We assign to it a score (or energy), ε(X), according to its
environment. Gap training is similar to the training of
other amino acid residues, in contrast to the usual ad hoc
treatment of gap energies. The proposed treatment is also
more symmetric than the different penalties for opening
and extending gaps.

The database of “native” and decoy structures is differ-
ent, however, for gapless and gap training. To optimize the
gap parameters, we need “pseudo-native” structures that
include gaps. We construct such “pseudo-native” conforma-
tions by removing the true native shape Xn of sequence Sn

from the coordinate training set and by replacing it with a
homologous structure, Xh. The best alignment of the
native sequence, Sn, into the homologous structure, Xh,
with an initial guess of gap penalties, defines S# n. The
extended sequence, S# n, with gap residues at certain (fixed
from this point on) positions becomes our new (pseudo-)
native sequence of the structure Xh.

We require that the alignment of S# n into the homologous
protein will yield the lowest energy compared with all
other alignments of the set. Hence, our constraints are

E~S# n, Xj, p! 2 E~S# n, Xh, p! . 0 ; j Þ h, n (10)

Equation 10 is different from eq. 7 because we consider the
extended set of amino acids, S# instead of S, and the
native-like structure is Xh instead of Xn.

To limit the scope of the computations, we optimize the
scores of the gaps only. Thus, we do not allow the amino
acid energies optimized separately (see the section, Linear
Programming Training of “Minimal” Models) to change
while optimizing parameters for gaps. Moreover, the se-
quence S# , obtained by a certain prior (e.g., structure-to-
structure) alignment, or from the experimental data, if
available, is held fixed. In other words, threading of the
extended sequence with fixed positions and number of gap
residues (treated now as any other residue), S# , against all
other structures in the training set is used, in order to
generate a corresponding set of inequalities, (eq. 10). This
optimization, although limited, and clearly not the final
word on the topic, is still expected to be better than a
guess. Further studies of gap penalties are in progress (T.
Galor, J. Meller, and R. Elber, unpublished data). Optimi-
zation of gaps has been attempted in the past.23,30

In principle, one could optimize deletion penalties using
a similar protocol. In this article, we exploit an assumed
symmetry between insertion of a gap residue to a sequence
and the placement of a “delete” residue in a virtual
structural site. The deletion penalty is set equal to the cost
of insertion averaged over the two nearest structural sites.
No explicit dependence on the amino acid type is assumed.

Double Z-Score Filter for Gapped Alignments

In later sections on these assessments we consider
optimal alignments of an extended sequence S# with gaps
into the library structures Xj. We focus on the alignments
of complete sequences to complete structures (global align-
ments17) and alignments of continuous fragments of se-
quences into continuous fragments of structures (local
alignment18). In global alignments, opening and closing
gaps (gaps before the first residue and after the last amino
acid) reduce the score. In local alignments, gaps or dele-
tions at the C- and N-terminals of the highest-scoring
segment are ignored. Only one local segment, with the
highest score, is considered.

Threading experiments that are based on a single
criterion (the energy) are usually unsatisfactory.26,31 Al-
though it is our goal that the (free) energy function that we
design is sufficiently accurate that the native state (the
native sequence threaded through the native structure) is
the lowest in energy, this is not always the case. Our exact
training is for the training set and for gapless threading
only (see the section, Application to Potential Design and
Analysis). The results were not extended to include exact
learning with gaps, or exact recognition of structures of
related proteins that are not the native. Such extensions
are difficult, as the number of inequalities for S# is exponen-
tially larger than the number of inequalities without gaps.

Other investigators use the Z-score as an additional
filter or as the primary filter,19,32,4,6 and we follow their
steps. The novelty in the present protocol is the combined
use of global and local Z-scores to assess the accuracy of
the prediction. This filtering mechanism, in addition to the
initial energy filter, provides improved discrimination as
compared with a single Z-score test.
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The Z-score is a dimensionless “normalized” score, de-
fined as

Z 5
^E& 2 Ep

Î^E2& 2 ^E&2 (11)

The energy of the current “probe,” i.e., the energy of the
optimal alignment of a query sequence into a target
structure is denoted by Ep. The averages, ^ . . . &, are over
“random” alignments. The Z-score measures the deviation
of our “hits” from random alignments (alignments with
scores far from the “random” average value are more
significant). Following common practice,32–34 we generate
the distribution of random alignments numerically, employ-
ing sequence shuffling. That is, we consider the family of
sequences obtained by permutations of the original se-
quence. The set of shuffled sequences has the same amino
acid composition and length as the native sequence, and
all the shuffled sequences have the same energy in the
unfolded state (the energy of an amino acid with no
contacts is set to zero).

In the section, Assessing the Distribution of Z-Scores for
Gapped Alignments, we estimate numerically the probabil-
ity P(Zp) of observing a Z-score of greater than Zp by
chance for local threading alignments. The relatively high
likelihood of observing large Z-scores for false-positives
makes predictions based on the Z-score test problematic.
Therefore, we propose an additional filtering mechanism,
based on a combination of Z-scores for global and local
alignments. The double Z-score filter eliminates false-
positives, missing a smaller number of correct predictions.

Global alignments (in contrast to local alignments) are
influenced significantly by a difference in the lengths of the
structure and the threaded sequence. The matching of
lengths was considered too restricted in previous stud-
ies.35 Nevertheless, using environment-dependent gap pen-
alty, the Z-score of the global alignment proved a useful
independent filter (see later sections on these assess-
ments). We observe that good scores are obtained for
length differences (between sequence and structure) that
are on order of 10%. By contrast, when the differences in
length are profound the global alignment fails. Large
differences imply identification of domains and not a whole
protein. This is a different problem, not addressed in the
present work.

APPLICATION TO POTENTIAL DESIGN
AND ANALYSIS

In this section, we analyze and compare several pairwise
and profile potentials, optimized using the LP protocol.
Given the training set, either we obtain a solution (exact
recognition on the training set), or the LP problem proves
infeasible.

We use the infeasibility of a set to test the capacity of an
energy model. We compare the capacity of alternative
energy models by inquiring how many native folds they
can recognize (before hitting an infeasible solution). The
larger the number of proteins that are recognized with the
same number of parameters, the better the energy model.

We find that, in general, the “profile” potentials have lower
capacity than that of the pairwise interaction models.

Training and Test Sets

Two sets of protein structures and sequences are used
for the training of parameters in the present study. Hinds
and Levitt developed the first set,31 which we call the HL
set. It consists of 246 protein structures and sequences.
Gapless threading of all sequences into all structures
generated the 4,003,727 constraints (i.e., the inequalities
of eq. 7). The gapless constraints were used to determine
the potential parameters for the 20 amino acids. Because
the number of parameters does not exceed a few hundred,
the number of inequalities is larger than the number of
unknowns by many orders of magnitude.

The second set of structures consists of 594 proteins and
was developed by Tobi et al.,25 which we call the TE set.
This set is considerably more demanding. It includes
structures chosen according to diversity of protein folds,
but also some homologous proteins (#60% sequence iden-
tity), and poses a significant challenge to the energy
function. For example, the set is infeasible for threading
onion model 1 (THOM1), even when using 20 types of
amino acids (see the next section). The total number of
inequalities that were obtained from the TE set using
gapless threading was 30,211,442. The TE set includes 206
proteins from the HL set.

We developed two other sets that are used as testing sets
to evaluate the new potentials in terms of both gapped and
gapless alignments. These test sets contain proteins that
are structurally dissimilar to the proteins included in the
training sets, specified by the root-mean-square deviation
(RMS) between the structures. A structure-to-structure
alignment algorithm, based on the overlap of the contact
shells defined for the superimposed side-chain centers in
analogy with THOM2 (disregarding however the identities
of amino acids), was used (J. Meller and R. Elber, unpub-
lished results).

The first testing set, referred to as S47, consists of 47
proteins: 25 proteins from the CASP3 competition36 and
22 related structures, chosen randomly from the list of
DALI37 relatives of the CASP3 targets. Using CASP3-
related structures is a convenient way of finding protein
structures that are not sampled in the training. None of
the 47 structures has homologous counterparts in the HL
set, and only six (representing three different folds) have
counterparts in the TE set, with a cutoff for structural
(dis)-similarity of 12 Å RMS (between the superimposed
side-chain centers).

The second test set, referred to as S1082, consists of
1,082 proteins that were not included in the TE set and
that are different by $3 Å RMS (measured, as previously,
between the superimposed side-chain centers) with re-
spect to any protein from the TE set and with respect to
each other. Thus, the S1082 set is a relatively dense (but
nonredundant at #3 Å RMS) sample of protein families.
The training and testing sets are available from the web.38
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Linear Programming Training of “Minimal” Models

This section addresses the question: What is the mini-
mal number of parameters required to obtain an exact
solution for the HL and for the TE sets? By “exact” we
mean that each of the sequences picks the native fold as
the lowest in energy using a gapless threading procedure.
Hence, all the inequalities in eq. 7, for all sequences Sn and
structures Xj, are satisfied.

The pairwise model requires the smallest number of
parameters (i.e., 55) to solve the HL set exactly (Table III).
Only 10 types of amino acids were required: HYD POL
CHG CHN GLY ALA PRO TYR TRP HIS (see also Table I).
THOM1 and THOM2 require 200 and 150 parameters,
respectively, to provide an exact solution on the same (HL)
set (Table III). It is impossible to find an exact potential (of
the functional forms we examined) for the HL set without
(at least) 10 types of amino acids. The potentials optimized
on the HL set are then used to predict the folds of the
proteins of the TE set. Again, we find that the pairwise
interaction model performs better than threading onion
models.

An indication that THOM2 is a better choice than
THOM1 is included in the next comparison. It is impos-
sible to find parameters that will solve the TE set exactly
using THOM1 (the inequalities form an infeasible set).
The infeasibility is obtained even if 20 types of amino acids
are considered. In contrast, both THOM2 and the pairwise
interaction model lead to feasible inequalities if the num-
ber of parameters is 300 for THOM2 and 210 for the
pairwise potential. The set of parameters that solved the
TE set exactly does not solve exactly the HL set, as the
latter set includes proteins not included in the TE set.

We have also attempted to solve the TE set using pair
energies and THOM2 with a smaller number of parame-
ters. The problem proved infeasible even for 17 different
types of amino acids and only very similar amino acids

grouped together (Leu and Ile, Arg and Lys, Glu and Asp).
Similarly, we failed to reduce the number of parameters by
grouping together structurally determined types of con-
tacts in THOM2. Enhancing the range of a “dense” site to
be a site of seven neighbors or more also results in
infeasibility.

Analysis of THOM2

As discussed earlier, in the section, Theory and Compu-
tational Models, the THOM1 potential provides a new set
of parameters for an effective solvation model that was
used in the past. Because in applying the LP protocol we
can only solve the HL set, the solution for that set gives our
optimal THOM1 energies, as included in Table IVA. In this
section, we analyze THOM2 in detail, which has signifi-
cantly higher capacity than THOM1. However, the double
layer of neighbors makes the results more difficult to
understand.

Figure 1 presents a contour plot of the total contribu-
tions of different types of contacts to the native energies of
the native alignments in the TE set. The plots show the
energy contributions as a function of the number of
neighbors of the primary site (with known amino acid
identity) and the number of contacts to a secondary site,
n9, respectively. The results for two types of residues,
lysine and valine, are presented. The contribution of a
given type of contact is defined as f z εa(n, n9), where εa(n,
n9) is the energy of a given type of contact, and f is the
frequency of that contact, observed in the TE set.

It is possible to find a very attractive (or repulsive) site
that makes only negligible contribution to the native
energies, since it is extremely rare (i.e., f is small). Table V
displays specific examples. By plotting f z εa(n, n9), we
emphasize the important contributions. Hydrophobic resi-
dues with a large number of contacts stabilize the native
alignment, as opposed to polar residues that stabilize the
native state only with a small number of neighbors.

It has been suggested that pairwise interactions are
insufficient to fold proteins, and higher-order terms are
necessary.26 It is of interest to check whether the environ-
ment models that we use catch cooperative, many-body
effects. As an example, we consider the cases of valine–
valine and lysine–lysine interactions. We use eq. 6 to
define the energy of a contact. In the usual pairwise
interaction, the energy of a valine–valine contact is a
constant and is independent of other contacts that the
valine may have.

Table VI lists the effective energies of contacts between
valine residues as a function of the number of neighbors in
the primary and secondary sites. The energies differ
widely from 21.46 to 13.01. The positive contributions
refer to very rare type of contact. The plausible interpreta-
tion is that these rare contacts are used to enhance
recognition in some cases, due to specific “homologous
features.” Significant differences are observed also for the
frequently occurring types of contacts that contribute in
accord with the “general principle” of rewarding contacts
between hydrophobic sites. For example, the effective
energies of contacts between valine of five neighbors with

TABLE III. Comparing the Capacity of Different
Threading Potentials*

Potential
Hinds–Levitt

set
Tobi–Elber

set

Pairwise, HP model, par. free 200 456
Pairwise, 10 aa, 55 par 246a 504
Pairwise, 20 aa, 210 par 246a 530
Pairwise, 20 aa, 210 par 237 594a

THOM1, 20 aa, 200 par 246a 474
THOM2, 10 aa, 150 par 246a 478
THOM2, 20 aa, 300 par 246a 428
THOM2, 20 aa, 300 par 236 594a

*Capacity for recognition of pairwise and profile threading potentials
measured by gapless threading on Hinds–Levitt (HL) and Tobi–Elber
(TE) representative sets of proteins (see the section, Training and Test
Sets). Threading onion model 1 (THOM1) performs significantly worse
than pairwise potentials. THOM2 shows a comparable performance
and is able to learn the TE set (see also Table X). For each potential,
the number of amino acid (aa) types used and the resulting number of
parameters are reported. The number of correct predictions for
structures in HL and TE sets is given in the second and third columns,
respectively.
aThe training set used (either HL or TE).
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another valine of three, five, or seven neighbors are equal
to 20.44, 20.54, 20.61, respectively. Hence, THOM2
includes significant cooperativity effects. The optimal pa-
rameters for THOM2 potential are provided in Table IVB.

Training of Gap Energies

In this section, we apply the linear protocol for the
optimization of gap energies described earlier. Training
concerns the gap energies for THOM2 only, and it is
limited to a small set of carefully chosen homologous pairs.

Despite the limited scope of our training, we obtain
satisfactory results in terms of recognition of remote
homologues, as discussed subsequently.

Pairs of homologous proteins from the following families
were considered: globins, trypsins, cytochromes, and ly-
sozymes (Table VII). The families were selected to repre-
sent different folds. The globins are helical, trypsins are
mostly b-sheets, and lysozymes are a/b proteins. Note also
that the number of gaps differs appreciably from a protein
to a protein. For example, S# n includes only one gap for

TABLE IV. Parameters of Some Threading Potentials Trained Using the LP Protocol*

A: THOM1a

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

(1) 20.02 0.10 20.22 0.02 20.13 0.02 0.05 20.05 20.15 20.17 20.04 0.13 20.40 20.52 0.29 20.02 0.02 20.20 20.23 20.16
(2) 20.06 20.23 20.07 0.20 20.37 0.21 20.03 20.06 20.05 20.30 20.22 0.12 20.20 20.25 0.24 20.01 20.10 20.57 20.27 20.25
(3) 20.02 20.01 20.01 0.43 20.72 0.09 0.10 0.05 20.25 20.48 20.37 0.19 20.66 20.58 0.06 0.05 20.12 20.77 20.37 20.38
(4) 20.17 0.12 0.29 0.37 20.70 0.22 0.40 0.14 20.31 20.64 20.41 0.60 20.50 20.68 0.22 0.00 0.21 20.36 20.39 20.36
(5) 20.13 0.22 0.20 0.68 21.13 0.33 0.45 0.38 0.24 20.53 20.50 0.37 20.39 20.65 0.31 0.31 0.02 20.65 20.78 20.51
(6) 0.02 0.32 0.17 0.43 21.16 0.02 0.70 0.42 0.36 20.57 20.58 0.63 20.80 20.82 0.75 0.27 0.24 20.46 20.72 20.51
(7) 0.12 20.10 0.30 0.43 21.27 0.46 0.39 0.20 0.27 20.76 20.54 0.73 20.44 20.40 0.42 0.09 0.36 0.12 20.39 20.78
(8) 20.07 0.91 20.12 20.01 21.60 0.51 0.83 0.29 20.71 21.37 20.72 0.57 20.66 0.25 0.02 0.36 0.15 20.26 20.74 20.59
(9) 0.83 1.36 0.11 0.35 21.71 0.82 10.00 2.12 3.38 20.33 1.03 10.00 1.66 21.03 1.13 2.23 20.57 10.00 20.38 20.13
(10) 1.57 10.00 10.00 10.00 10.00 10.00 10.00 0.83 10.00 20.93 20.47 10.00 10.00 0.40 10.00 10.00 10.00 20.78 10.00 0.71

B. THOM2b

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

(1,1) 0.23 20.03 20.03 20.08 20.82 20.26 0.09 0.29 0.07 20.12 20.16 20.02 0.21 20.20 0.03 0.05 20.07 20.50 20.64 20.28
(1,5) 20.21 20.26 20.10 0.20 21.11 0.00 20.08 0.00 0.03 20.31 20.23 20.13 20.15 20.29 20.23 0.07 20.09 20.60 20.40 20.36
(1,9) 26.01 24.09 25.42 26.14 27.27 25.88 25.80 25.81 24.75 25.46 25.85 24.91 24.97 25.83 26.17 25.89 25.89 25.25 26.79 26.99
(3,1) 20.01 20.10 20.17 0.02 20.50 20.09 0.11 0.31 0.04 20.10 20.10 0.11 20.20 20.17 20.02 0.40 0.06 20.31 20.29 20.05
(3,5) 20.08 0.18 0.15 0.13 20.69 0.12 0.24 0.04 20.03 20.29 20.21 0.14 0.08 20.32 20.05 0.06 0.08 20.36 20.28 20.17
(3,9) 20.29 0.06 20.33 0.08 20.78 0.18 0.02 20.13 20.47 20.60 20.49 0.09 20.85 20.07 0.19 0.23 0.15 20.15 0.03 20.27
(5,1) 0.13 20.21 0.04 0.22 20.15 20.11 0.08 0.48 0.19 20.15 20.32 20.06 20.15 20.27 0.17 0.19 0.34 20.07 0.02 0.19
(5,5) 0.06 0.16 0.20 0.17 20.60 0.04 0.13 0.18 20.04 20.25 20.19 0.26 20.26 20.28 0.09 0.11 0.02 20.36 20.30 20.27
(5,9) 20.65 0.68 20.26 20.19 20.82 20.09 0.43 20.36 20.19 20.47 20.42 0.34 0.32 0.07 0.55 0.22 0.01 0.04 20.46 20.58
(7,1) 6.29 5.50 5.56 6.02 5.09 5.55 5.68 6.10 5.70 5.59 5.26 6.08 5.64 5.80 5.82 5.23 5.48 6.42 5.17 5.53
(7,5) 0.17 0.29 0.36 0.39 20.28 0.28 0.45 0.33 0.28 20.08 20.01 0.50 0.24 20.16 0.42 0.13 0.34 0.04 20.08 20.03
(7,9) 0.08 0.41 0.00 20.15 20.30 0.04 20.27 0.05 0.69 0.04 20.17 0.67 0.06 0.03 20.71 0.82 0.24 20.36 0.14 20.25
(9,1) 10.00 4.50 6.05 5.21 4.00 5.94 10.00 10.00 10.00 10.00 6.22 5.59 4.91 6.02 9.61 10.00 10.00 5.88 10.00 10.00
(9,5) 0.26 0.30 0.26 0.71 0.41 20.02 0.32 0.83 20.09 1.26 20.15 0.52 20.19 0.43 3.07 0.43 0.52 20.08 0.08 0.21
(9,9) 0.20 0.04 20.37 21.34 21.19 0.47 1.37 21.36 1.06 21.99 20.25 20.29 1.41 21.33 6.94 3.22 20.54 0.81 20.53 20.52

aNumerical values of the energy parameters for threading onion model 1 (THOM1) potential trained on the Hinds–Levitt (HL) set of proteins.
bNumerical values of the energy parameters for threading onion model 2 (THOM2) potential trained on the Tobi–Elber (TE) set of proteins.
*Rows correspond to either different types of sites (THOM1) or contacts (THOM2). Columns correspond to different types of amino acids. See text for details.

Fig. 1. Contour plots of the total energy contributions to the native alignments in the Tobi–Elber (TE) set for valine and lysine residues as a function of
the number of neighbors in the first and second shells. a: Contacts involving valine residues with five to six neighbors with other residues of medium
number of neighbors stabilize most of the native alignments. b: Only contacts involving lysine residues with a small number of neighbors stabilize native
alignments.
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alignment of 1ccr (sequence) versus 1yea (structure), and
22 gaps for 1ntp versus 2gch. The structures of the
lysozymes 1lz5 and 1lz6 include engineered insertions that
allow us to sample experimentally observed gap locations.

For the remaining families, the process of generating
pseudo-native sequences is as follows. For each pair of
native and homologous proteins, the alignment of the
native sequence S# n into the homologous structure Xh is
constructed using the THOM1 potential, with an initial
guess for the gap energies, provided in Table VIIIA. The ad
hoc gap penalties favor gaps at sites with few neighbors,
and they satisfy the following constraints: (1) the gap

penalty should increase with the number of neighbors; (2)
the energy of a gap with n contacts must be larger than the
energy of an amino acid with the same number of contacts
(the gap energy must be higher; otherwise, gaps will be
preferred to real amino acids); and (3) the energy of amino
acids without contacts is set to zero, and therefore the gap
energy is greater than zero. Given these constraints, the
initial gap penalties are tuned up to minimize the discrep-
ancies with the DALI37 structure-to-structure alignments
(we choose not to use the DALI alignments directly, since
they involve deletions that are not trained explicitly at this
stage; see the section, Protocol for Optimization of Gap
Energies.

The “pseudo-native” structures with extended sequences,
obtained as described above, are added to the HL set
(while removing the original native structures). The en-
ergy functional form we used for the gaps is the same as for
other amino acids in THOM2. “Gapless” threading into
other structures of the HL set generates about 200,000
constraints for the gap energies, which are solved using
the LP solver. The resulting gap penalties for THOM2 are
given in Table VIIIB. The value of 10 is the maximal
penalty allowed by the optimization protocol we used. The
maximal penalty is assigned to gaps found only in decoy
states and that have no native states to bound the penalty
at lower values. For example, using our initial guess for
gap penalties, we do not observe gaps at the hydrophobic
cores of pseudo-native structures. Gaps are usually found
in loops with significant solvent exposure, and we have no
information in our training set on “native” gaps in sites
that are neighbor-rich.

Table IX presents the results of optimal threading with
gaps (using dynamic programming) for myoglobin (1mba)
against leghemoglobin (1lh2) structure. We show the

TABLE V. Characterization of Native
and Decoy Structures*

A: THOM1a

Type of sitea
Native

(HYD/POL) Decoys (HYD/POL)

(1) 16.97 (4.89/12.09) 24.20 (11.72/12.48)
(2) 17.30 (6.06/11.24) 21.72 (10.52/11.20)
(3) 17.72 (8.29/9.43) 18.70 (9.06/9.64)
(4) 16.60 (9.68/6.92) 15.00 (7.28/7.73)
(5) 14.62 (10.16/4.47) 10.79 (5.24/5.55)
(6) 9.96 (7.66/2.30) 6.04 (2.94/3.10)
(7) 4.95 (4.02/0.92) 2.63 (1.28/1.35)
(8) 1.57 (1.32/0.25) 0.77 (0.38/0.40)
(9) 0.26 (0.21/0.05) 0.12 (0.06/0.06)
(10) 0.04 (0.04/0.00) 0.02 (0.01/0.01)

B: THOM2b

Type of contact Native (HYD/POL) Decoys (HYD/POL)

(1#,1#) 5.09 (1.59/3.50) 11.34 (5.48/5.85)
(1#,5#) 9.02 (2.99/6.04) 12.69 (6.15/6.54)
(1#,9#) 0.41 (0.15/0.26) 0.35 (0.17/0.18)
(3#,1#) 6.25 (2.88/3.37) 9.51 (4.60/4.91)
(3#,5#) 24.09 (13.01/11.08) 26.59 (12.91/13.68)
(3#,9#) 3.23 (1.88/1.35) 2.29 (1.12/1.18)
(5#,1#) 2.77 (1.81/0.96) 3.18 (1.54/1.64)
(5#,5#) 28.36 (20.96/7.40) 22.09 (10.75/11.34)
(5#,9#) 6.85 (5.11/1.74) 3.84 (1.87/1.96)
(7#,1#) 0.40 (0.31/0.09) 0.34 (0.16/0.17)
(7#,5#) 9.56 (8.00/1.56) 5.84 (2.85/3.00)
(7#,9#) 3.21 (2.60/0.61) 1.54 (0.75/0.79)
(9#,1#) 0.01 (0.01/0.00) 0.01 (0.01/0.01)
(9#,5#) 0.52 (0.44/0.08) 0.29 (0.15/0.14)
(9#,9#) 0.23 (0.19/0.04) 0.09 (0.05/0.05)

*Overall site and contact distributions are split into distributions for
hydrophobic and polar residues (as defined in Table I), given in the
parentheses.
aFrequencies of different types of sites, relevant for training of
threading model 1 (THOM1), found in the native structures of the
Hinds–Levitt (HL) set, as opposed to decoy structures generated using
the HL set. In THOM1, the type of site is defined by number of its
neighbors (n). Frequencies are defined by the percentage from the
total number of 53,012 native sites in the HL set and 556.14 millions of
decoy sites generated using the HL set, respectively.
bFrequencies of different types of contacts, appropriate for training of
threading onion model 2 (THOM2), found in the native structures of
the Tobi–Elber (TE) set, as opposed to decoy structures generated
using TE. Different classes of contacts are specified in Table II.
Frequencies are defined by the percentage from the total number of
439,364 native contacts in the TE set and 10089.19 millions of decoy
contacts generated using the TE set, respectively.

TABLE VI. Cooperativity in Effective Pairwise
Interactions of the THOM2 Potential*

A: VAL residuesa

V(1#) V(3#) V(5#) V(7#) V(9#)

V(1#) 20.56 20.41 20.17 21.46 3.01
V(3#) 20.41 20.34 20.44 20.30 20.07
V(5#) 20.17 20.44 20.54 20.61 20.38
V(7#) 21.46 20.30 20.61 20.49 20.76
V(9#) 3.01 20.07 20.38 20.76 21.03

B: LYS residuesb

K(1#) K(3#) K(5#) K(7#) K(9#)

K(1#) 20.03 20.03 20.19 1.18 0.69
K(3#) 20.03 0.28 0.40 0.58 0.61
K(5#) 20.19 0.40 0.52 0.83 0.86
K(7#) 1.18 0.58 0.83 1.34 0.38
K(9#) 0.69 0.61 0.86 0.38 20.59

*For a pair of two amino acids a and b in contact, we have 25 different
possible types of contacts (and consequently 25 different effective
energy contributions) as a and b may occupy sites that belong to one of
the five different types characterized by the increasing number of
contacts in the first contact shell (see Table II). Moreover, the 5 3 5
interaction matrix will be in general asymmetric.
aEffective energies of contact between two VAL residues with a
different number of neighbors.
bEffective energies of contacts between two LYS residues.
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initial alignment (with the ad hoc gap parameters in Table
VIIIA), defining the pseudo-native state, and the results
for optimized gap penalties for THOM2. The location of
gaps in the initial alignment is largely consistent with the
DALI37 structure-to-structure alignment. Four out of seven
insertions coincide with the DALI superposition of the two
structures, two insertions are shifted by three residues
(see footnote to Table IX). The THOM2 alignment (differ-
ent from the initial setup) is less consistent with the DALI
alignment. Interestingly, however, it provides a better
superposition of a-helices. The gaps appear (as expected)
in loop regions (e.g., the CD, EF, and GH loops). An
exception is the gap at position 9 (in 1lh2), located in the
middle of the a-helix instead of position 2, as suggested by

the DALI alignment. Further tests of alignments with
gaps are presented in the section we present threading
results for the pairwise TE potential (see the section, Tests
of the Model).

To compute optimal alignments with the FEA, we need
to set gap penalties for the TE potential. Pairwise models
are not the focus of our study, and we do not attempt to
optimize gap energies for the TE potential. Therefore, for
the sake of fair comparison, we introduce ad hoc gap
penalties based on a similar functional model, for both the
TE and THOM2 potentials.

After some experimentation, the insertion penalties are
chosen to be proportional to the number of neighbors to a
site, ε2

TE(n) 5 0.2 z (n 1 1) and ε2
THOM2(n) 5 1.0 z (^n& 1

1), for the TE and THOM2 potentials (the averaged
number of neighbors, ^n&, in a class n belongs to, is used for
THOM2; see Table II), respectively. This choice is consis-
tent with the trained THOM2 gap energies, which also
penalize sites of no neighbors. The proportionality coeffi-
cients were gauged using the same families used to train
THOM2 gap energies. However, no LP training was at-
tempted. The deletion penalties are also consistent with
the THOM2 model, and they are defined as described in
the section, Protocol for Optimization of Gap Energies. For
further comparisons with sequence-to-sequence align-
ments, we also introduce environment-dependent gap
penalties that are used for family recognition in conjunc-
tion with the BLOSUM5039 substitution matrix,

ε 2
B50~n! 5 ~5 2 n! 2 8

(see the section, Assessing the Specificity of the Protocol).

Assessing the Distribution of Z-Scores
for Gapped Alignments

In this section, we compute numerical distributions of the
Z-scores for local and global threading alignments, using
THOM2 and the gap penalties shown in Table VIIIB. On the
basis of these distributions, we derive empirical cutoffs for
the double Z-score test (discussed in the section, Double
Z-Score Filter for Gapped Alignments) that filters out all the
incorrect predictions observed in our benchmark. Further
tests of the specificity, as well as sensitivity of the double
Z-score filter, are included in the following sections.

TABLE VII. Pairs of Homologous Structures Used
for Training of Gap Penalties

Nativea Homologousa Similarityb

1mba (myoglobin, 146) 1lh2 (leghemoglobin, 153) 20%, 2.8 Å, 140 res
1mba (myoglobin, 146) 1babB (hemoglobin, chain B, 146) 17%, 2.3 Å, 138 res
1ntp (b-trypsin, 223) 2gch (g-chymotrypsin, 245) 45%, 1.2 Å, 216 res
1ccr (cytochrome c, 111) 1yea (cytochrome c, 112) 53%, 1.2 Å, 110 res
1lzl (lysozyme, 130) 1lz5 (1lzl 1 4 res insert, 134) 99%, 0.5 Å, 130 res
1lzl (lysozyme, 130) 1lz6 (1lzl 1 8 res insert, 138) 99%, 0.3 Å, 129 res
aFor each pair, the native and the homologous structures are specified by their Protein Data
Bank (PDB) codes, names, and lengths, respectively.
bThe similarity between the native and the homologous proteins is defined in terms of the
sequence identity (%), root-mean-square (RMS) distance (Å), and length (number of
residues), as defined by structure-to-structure alignments obtained by submitting the
corresponding pairs to the DALI server.37

TABLE VIII. Gap Penalties for THOM2 Model as Trained
by the LP Protocol*

A: THOM1a

Type of site Penalty

(0) 0.1
(1) 0.3
(2) 0.6
(3) 0.9
(4) 2.0
(5) 4.0
(6) 6.0
(7) 8.0
(8) 9.0
(9) 10.0

B: THOM2b

Type of contact Penalty

(0) 1.0
(1#,1#) 8.9
(1#,5#) 5.7
(1#,9#) 10.0

*The limited set of homologous structures presented in Table VII is
used.
aInitial guess of gap penalties for different types of sites in threading
onion model 1 (THOM1).
bOptimized gap penalties for different types of contacts in threading
onion model 2 (THOM2). Penalties that are not specified explicitly are
equal to the maximum value of 10.0. Note that the training is limited
and will be extended in a future work.
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To establish a cutoff for the Z-score (and not the
energy itself) that eliminates false-positives, we esti-
mate numerically the probability P(Zp) of observing a
Z-score larger than Zp by chance. The distribution of
Z-scores for random alignments is generated by thread-
ing sequences of the S47 set through structures included
in the HL set. The probe sequences of known structures
were selected to ensure no structural similarity between
the HL set and the structures of the probe sequences
(see the section, Training and Test Sets). Therefore, any
significant hit in this set may be regarded as a false-
positive. Z-scores of local alignments are employed to
estimate P(Zp). The number of local alignments with

“good” energies (significantly lower than zero) is large,
underlying the need for an additional selection mecha-
nism to eliminate false-positives.

In local alignments, a contribution due to a given contact
should be only included if it belongs to the alignment
(which is not known to start with). This implies a “structur-
al” FEA (see also the section, Assessing Protein Family
Signals and the Sensitivity of the Protocol). When count-
ing contacts, we assume that the sites in contact in the
original structure belong to the aligned part of the struc-
ture. This may result in spuriously low energies of local
matches, making the Z-score of the local threading align-
ment an important filter.

TABLE IX. Comparison of Alignments of Myoglobin (1mba) Sequence
into Leghemoglobin (1lhz) Structure*

A: THOM1a

.........1.........2.........3.........4.........5......... 1–59
SLSAAEADLAGKSWAPVFANKNANGLDFLVALFEKFPDSANFFADFKGKSVADIKASPK 1mba
GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPE 1lh2
.........1.........2.........3.........4.........5......... 1–59

6.........7.........8......ii...9.........0.........1...... 60–116
LRDVSSRIFTRLNEFVNNAANAGKMSA--MLSQFAKEHVGFGVGSAQFENVRSMFPGFV 1mba
LQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKGVADAHFPVVKEAILKTI 1lh2
6.........7.........8.........9.........0.........1........ 60–118

...2..i..i.....3.........4..i...i.i 117–146
ASVAAP-PA-GADAAWTKLFGLIIDALK-AAG-A- 1mba
KEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA 1lh2
.2.........3.........4.........5... 119–153

B: THOM2b

........i.1.........2.........3.........4.........i....i.i. 1–55
SLSAAEAD-LAGKSWAPVFANKNANGLDFLVALFEKFPDSANFFADFKGK-SVAD-I-K 1mba
GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPE 1lh2
.........1.........2.........3.........4.........5......... 1–59

....6.........7........i.8.i........9.........0.........1.. 56–112
ASPKLRDVSSRIFTRLNEFVNNA-ANA-GKMSAMLSQFAKEHVGFGVGSAQFENVRSMF 1mba
LQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKGVADAHFPVVKEAILKTI 1lh2
6.........7.........8.........9.........0.........1........ 60–118

.......2.i........3.........4...... 113–146
PGFVASVAA-PPAGADAAWTKLFGLIIDALKAAGA 1mba
KEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA 1lh2
.2.........3.........4.........5... 119–153

*The location of insertions in the initial alignment (which is used for training of gap energies) is
largely consistent with the DALI structure-to-structure alignment,37 which aligns: residues 2–50
of 1mba to 3–51 of 1lh2, residues 53–56 of 1mba to 52–55 of 1lh2 (implying deletions at positions 51
and 52 in 1mba), residues 59–80 of 1mba to 56–77 of 1lh2, residues 81–86 of 1mba to 82–87 of
1lh2, residues 87–121 of 1mba to 89–123 (with the implied insertion at position 88 in 1lh2),
residues 122–139 of 1mba to 126–143 of 1lh2 (implying two insertions at positions 124 and 125 in
1lh2), and residues 140–145 of 1mba to 145–150 of 1lh2 (with an insertion at position 144 in 1lh2),
respectively. a-Helices in both structures are marked in boldface. Note that F- and G-helices are
shifted considerably in the DALI alignment (there is no counterpart for the D-helix in 1lh2). The
initial THOM1 alignment is in perfect agreement with the DALI superposition between residues
88 and 150 of 1lh2, except for two insertions at positions 128 and 147 (shifted by three residues
with respect to the DALI alignment). The insertions at positions 88, 125, 151, and 153 coincide
with the DALI alignment. The THOM2 alignment, with trained gap penalties of table 9.B, is in
perfect agreement with the DALI superposition for residues 10–50 of 1lh2 (including A-, B-, and
C-helices) and then departs from the DALI alignment, overlapping E-, F-, and G-helices with a
smaller shift.
aThreading onion model 1 (THOM1) alignment with the initial gap penalties.
bThreading onion model 2 (THOM2) alignment with trained gap penalties.
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As can be seen in Figure 2, the attempted analytical fit
to the gaussian distribution underestimates the tail of the
observed distribution. The analytical fit to the extreme
value distribution,40 in turn, provides an upper bound for
the tail. In the realm of sequence comparison, the extreme
value distribution has been used to model scores of random
sequence alignments for both local ungapped align-
ments,41 as well as local alignments with gaps.42,43 How-
ever, we establish our thresholds on the basis of the
numerical distribution.

The number of random alignments with a Z-score of .3,
for example, is non-negligible (see the tail in Fig. 2 as well
as the analytical estimate in the legend of Fig. 2). The
expected number of false-positives observed in N trials is
N z P(Zp). Therefore, only relatively high Z-scores (that
would miss, at the same time, many correct predictions)
may result in significant predictions, when searching large
databases. Restricting the Z-score test only to best matches
(according to energy) is insufficient. We find that the
double Z-score filter performs better, eliminating false-
positives with a smaller number of correct predictions that
are dismissed as insignificant.

Figure 3 displays the joint probability distribution for
global and local Z-scores for a population of false-positives

versus a population of correct predictions. The squares at
the upper right corner represent correct predictions, result-
ing from 331 native alignments (of a sequence into its
native structure) and homologous alignments (of a se-
quence into a homologous structure) of the HL set pro-
teins. The circles at the lower left corner are incorrect
predictions (false-positives) obtained from the alignments
of the sequences of the S47 set against all structures in
the HL.

The procedure is the same as the one used previously to
generate the probability density function for the Z-scores
of local alignments. However, the Z-scores are computed
using 1,000 shuffled sequences for both global and local
alignments, which is sufficient for convergence. The con-
verged results somewhat reduce the tails of the distribu-
tion. For example, the number of false-positives with a
global Z-score greater than 2.5 and a local Z-score greater
than 1.0 is equal to 3, as compared with 7 with only 100
shuffled sequences.

Figure 3 shows that the thresholds of 3.0 for global
Z-scores and of 2.0 for local Z-scores are sufficient to
eliminate all the false predictions. These cutoffs result in a
number of misses (see also the next section). However, this
is the price we have to pay for high confidence in our
predictions. The total number of pairwise alignments for
which we compute the global and the local Z-scores, and
subsequently test for the presence of false-positives, is
about 10,000. Hence, we estimate that the probability of
observing a single false-positive with a global Z-score and
a local Z-score greater than 3.0 and greater than 2.0 than
that of the thresholds is ,0.0001.

TESTS OF THE MODEL

We perform four tests in this section on the THOM2
potential. First, we compare the performance of the THOM2
and pair potentials from the literature, using gapless
alignments and the S1082 set of proteins. Next, we con-
sider alignments with gaps. We test the specificity and
sensitivity of the double Z-score filter employed to assess
the statistical significance of gapped alignments. Using
the double Z-score filter, we analyze self-recognition for
the S47 set of proteins that contains representatives of
folds not sampled in the training. Next, tests of family
recognition are presented, including comparison of THOM2
results with those of a pairwise model, using the FEA.

Evaluation of THOM2 and Pair Potentials by
Gapless Threading

To make a comparison with pairwise potentials, and to
test, at the same time, the generalization capacity of
THOM2, we use the S1082 set. This set does not contain
proteins included in the training set. However, as dis-
cussed in the section, Training and Test Sets, the thresh-
old of 3 Å RMS for global structure-to-structure align-
ments (using side-chain centers) excludes only close
structural homologues. Therefore, the S1082 set includes
many structural variations of the folds used in the train-
ing. In general, it is difficult to find completely indepen-
dent test sets when using training sets covering essen-

Fig. 2. Probability distribution function of the Z-scores computed with
local threading alignments for the population of false-positives. A set of 47
sequences of proteins included in the S47 set is used to sample the
distribution of the Z-scores for false-positives (proteins of the S47 set
have no homologues in the Hinds–Levitt (HL) set; see text for details).
Each of the sequences is aligned to all the structures included in the HL
set. The Z-scores are calculated for the 200 best matches (according to
energy), using 100 shuffled sequences. The observed distribution of
Z-scores for 6,813 local threading alignments is represented by 1. Note
the significant tail to the right, indicating a relatively high likelihood of
observing false-positives with large Z-scores. The dotted line shows the
attempted analytical fit to the gaussian distribution, whereas the solid line
the attempted fit to the extreme value distribution (EVD). Note that actual
distribution deviates significantly from both. According to the analytical fit
to the EVD, the probability of observing a Z-score larger than ZP by
chance is equal to P~ZP! 5 1 2 exp$2exp@21.313 z ~ZP 1 0.466!#% with
the 98% confidence intervals: 1.313 6 0.112 and 0.466 6 0.079. For
example, the probability of observing by chance a Z-score of .4 5 0.003.
We emphasize, however, that the analytical fit to the extreme value
distribution provides an upper bound for the observed number of ob-
served false-positives.
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tially all the known folds. This problem concerns all the
knowledge-based potentials considered in this discussion.

Using gapless threading, we compare the performance of
THOM2 with the performance of five knowledge-based
pairwise potentials. As can be seen in Table X, the
Godzik–Skolnick–Kolinski (GSK) potential44 is the best in
terms of the number of inequalities that are not satisfied,
followed by the Betancourt–Thirumalai (BT),45 Tobi–
Elber (TE),25 THOM2, Miyazawa–Jernigan (MJ),46 and
the Hinds–Levitt (HL)47 potentials. However, in terms of
the number of proteins recognized exactly (i.e., proteins
with native energies lower than energies of all the decoys
generated by gapless threading into all the structures in
the S1082 set), the HL potential is the best, followed by
TE, MJ, THOM2, BT, and GSK potentials.

The lack of correlation between the above two criteria is
related to the fact that some of the above potentials, while
recognizing very well many proteins, fare quite poorly for
some of the proteins included in the S1082 set. Reducing
the number of violated inequalities becomes important
when applying some additional filters to select correct
predictions from a small subset of energetically favorable
matches (e.g., the Z-score test; see the section, Assessing
the Distribution of Z-Scores for Gapped Alignments).
Therefore, it would be desirable to satisfy both criteria at
same time (also maximizing the Z-score of the distribution

TABLE X. Comparison of THOM2 and Knowledge-Based
Pairwise Potentials, Using Gapless Threading*

Potential Recog structsa Nsat ineqs (M)b Z-scorec

HL 915 1.84 1.14
TE 914 0.20 1.45
MJ 902 0.28 1.23
THOM2 877 0.24 1.35
BT 861 0.17 1.26
GSK 819 0.08 1.35

*Results of gapless threading on the S1082 set (see text for the
details). The results of threading onion model 2 (THOM2) potential
are compared with five other knowledge-based pairwise potentials:
Betancourt and Thirumalai (BT),44 Hinds and Levitt (HL),46 Miyazawa
and Jerningan (MJ),45 Godzik, Kolinski, and Skolnick (GKS),43 and
Tobi and Elber (TE).25 The latter potential was trained using the
linear programming (LP) protocol and the same (TE) training set.
Note lack of correlation between the number of proteins that are
missed and the number of inequalities, which are not satisfied. See
text for further details.
aPotentials are ordered according to the number of proteins recognized
exactly (out of 1,082).
bThe number of inequalities that are not satisfied, out of approxi-
mately 95 million inequalities generated from the S1082 set (in units
of millions).
cZ-scores (i.e., the ratios of the first and the square root of the second
moments) for the distributions of energy differences between the
native and misfolded structures.

Fig. 3. The joint probability distribution for the Z-scores of global and local alignments. Circles at the lower
left corner represent a population of 1,081 false-positives, resulting from the alignments of the S47 set
sequences (see Fig. 4) against all structures in the Hinds–Levitt (HL) set (100 best global and 200 best local
matches are considered, disregarding matches with positives energies of global alignments). The best pair
scoring false-positive is slightly below the threshold (3,2). The population in the right upper corner represents
(h) 331 pairs of HL sequences aligned to HL structures with global Z-scores of .2.5 and local Z-scores of .1.
This set includes 236 native alignments and 95 non-native alignments; 10 matches are false-positives (■), and
they are all below the threshold (3,2). Stiffer energy constraints were employed with only the 10 best global and
200 best local alignments considered. There is a population of true-positives below (2.5,1.0), which are not
shown (including 10 native alignments). However, the number of false-positives below this threshold makes
predictions within this range difficult.
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of energy gaps). From this point of view, the TE, MJ, and
THOM2 potentials seem to be somewhat better than the
other four potentials. Gapless training of energies remains
difficult problem, as reflected in Table X. None of the
widely used potentials has a better than 90% success rate.
In a set of 1,000 proteins, this translates into many errors.

The conclusion, which is important for the present work,
is that the performance of the THOM2 potential is compa-
rable to the performance of pairwise potentials, including
the TE potential trained on the same set using a similar
LP protocol. Since the proteins used in this test either were
not included in the training or represent at least consider-
able variations of the structures included in the training,
we conclude that the exact learning on the training set
does not result in overfitting. This is further supported by
the results (presented in the next section) for the S47 set of
proteins that represent folds not sampled during the
training.

Self-recognition by Gapped Alignments

We summarize first the performance of the THOM2
potential in terms of self-recognition of the HL set proteins
by optimal alignments and Z-score filters. The HL set was
partially learned (using gapless threading). However, our
training did not include the Z-score or the possibility of
gaps. Successful predictions based on the Z-score only are
useful tests, even if performed on the training set of
structures. Additionally, there are 40 proteins in the HL
set that were not included in the learning (TE) set.

For each sequence, we generate all the global and local
alignments into all the structures in the HL set. Energy
and Z-score filters are considered. Of the total of 246
proteins, 234 native (global) alignments obtain the lowest
energy and the highest Z-score. There are four native
alignments resulting in weak Z-scores. The four failures
are membrane proteins (from the photosynthetic reaction
centers) that were not included in the training set. Only 5
of the remaining 242 native alignments obtain Z-scores of
,3 (four alignments with Z-scores of .2.5 and one align-
ment with a Z-score of ,2.5).

For the local alignments, we use the Z-score as the main
filter, as there are many incorrect alignments with low
energies. There are 226 local native alignments with
Z-scores of .2 (177 of them of rank 1 and 35 of them of
rank 2). Among the remaining 20 local native alignments,
9 result in very low Z-scores (Z , 1.0), including six
structures from the training set. Using the double Z-score
filter with the conservative threshold of 3 for global
Z-scores and of 2 for local Z-scores results in dismissing 23
native alignments as insignificant.

In order to assess further the generalization capacity of
THOM2 in terms of self-recognition by optimal align-
ments, we use the S47 set again. The structures of S47
proteins were embedded in the structures of the TE set,
and the sequences of 25 proteins representing different
folds in the S47 set were aligned into all the structures of
this extended set. We observe that the native structures
are found with high probability. A total of 20 of 25

structures result in native alignments with global Z-scores
of .3 and local Z-scores of .2 (Table XI).

A less encouraging observation is the sensitivity of the
results to structural fluctuations. THOM2 can identify
related structures only if their distance is not too large.
Seven out of 14 homologous structures with the DALI37

Z-score for a structure-to-structure alignment of .10 are
detected with high confidence. Only one homologous struc-
ture with the DALI Z-score of ,10 is detected.

We would like to point out that only six structures (three
pairs of structures representing three folds) of the S47 set
had homologous counterparts in the training set. It is
therefore reassuring that most of the native structures
and significant fraction of the relatives are recognized in
terms of both their energies and the Z-scores. Moreover,
there are no further significant hits into other structures
from the TE set. Hence, no false-positives above our
confidence thresholds are observed in this test. We con-
clude that our nearly exact learning (on a training set)
preserves significant capacity for identification of new
folds using optimal alignments with gaps.

Assessing the Specificity of the Protocol

We present examples of family recognition (i.e., identifi-
cation of homologues) in terms of energy and double
Z-score filter. Only a few homologues are identified in a
large set of (decoy) structures. This allows us to assess the
specificity of the protocol, providing a limited analysis of
the sensitivity as well (see the next section for an extended
assessment of the sensitivity). The test set S1082 is used.
Eight families that have at least three representatives in
the S1082 set are chosen to illustrate various aspects of
THOM2 threading alignments, as compared with DALI37

structure-to-structure alignments, as well as sequence-to-
sequence alignments. The latter ones are generated using
Smith–Waterman algorithm,18 with the BLOSUM5039

substitution matrix and structurally biased gap penalties
(see the section, Training of Gap Energies). Since we do not
incorporate family profiles in our threading protocol, we
consider only pairwise sequence alignments for compari-
son in this discussion.

Similarly to threading, the confidence of sequence
matches is estimated using Z-scores, defined by the distri-
bution of scores for shuffled sequences. We find that
structurally biased gap penalties improve the recognition
in case of weak sequence similarity. We do not observe
false-positives with more than 50% of the query sequence
aligned and with a Z-score larger than 8 (for sequence
alignment). If there is no clear evidence of sharing a
common ancestor and a common function, the structural
dissimilarity is used to define false-positives. Note that the
distribution of Z-scores for sequence substitution matrices
is different from that of threading potentials, with a very
high Z-score for highly homologous sequences.

Regarding the specificity of threading results for the
families considered in this discussion, we point out that
there are only two energy-based predictions with rela-
tively high global and local threading Z-scores that are
false. They are still below our thresholds. The highest-
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scoring false-positive, namely the alignment of the aspar-
tyl protease 1htrB into the xylanase 1clxA (Z-scores of 3.7
and 1.5, when converged using 1,000 shuffled sequences;
see Table XIID), is still below our cutoffs. The alignment of
the zinc-finger protein 1meyC into the Adrl DNA-binding
domain 2adr is potentially the highest-scoring false-
positive among the sequence-based matches. However,
even though 1meyC and 2adr are structurally dissimilar
according to DALI (RMS of 7.9 Å for 40 residues), they
share very high sequence similarity (42% for 55 residues),
have similar function, and are classified as related folds
(zinc-finger design and classic zinc finger, respectively) by
SCOP.52 Other false-positives due to the sequence-to-
sequence alignments obtain Z-scores of 5–7, which may
cause difficulties in making predictions based on weak
sequence similarity.

Regarding the sensitivity of the protocol, one finds first
that all the native structures are with the lowest energies
and are recognized with high confidence in terms of the
double Z-score filter. We observe a varying degree of
success in the recognition of family members and struc-
tural homologs, as illustrated in Table XIIA–H. Threading
predictions are very robust for RAS, lactoglobulin, and
glutathione transferase families. In the case of the RAS
family (Table XIIA), a number of matches into remote
structural relatives that share certain structural motifs
with the RAS fold are observed. The structural similarity
between lactoglobulins and bilin-binding proteins (that do
not share detectable sequence similarity) is recognized
(see alignment of 2blg into 2apd in Table XIIB). Gluta-
thione transferases 1aw9 and 1axdA, with very weak
signals from sequence alignments, are recognized as well.

By contrast, there are families for which threading
performance is erratic, including phosphotransferase, cyto-
chrome, and zinc-finger families that include matches
recognizable by sequence alignment, of similar length and
significant structural similarity, yet not recognized by
threading (Table XIIC–F). The results for the pepsin-like
acid proteases (Table XIIG) demonstrate missing matches
attributable to significant differences in length, which are
difficult to account for in global alignments. Local se-
quence and threading alignments for proteases 1pfzA and
1lyaB result in high Z-scores, but no signal from global
threading alignment is observed. The family of small
toxins is an example of relatively weak signals (both from
threading and sequence alignment) that are below our
universal cutoffs for false positives (Table XIIH).

Assessing Protein Family Signals and the
Sensitivity of the Protocol

Three families are considered: globins (92 proteins),
immunoglobins (Fv fragments, 137 proteins), and the
DNA-binding, POU-like domains (26 proteins). Sequences
of all family members are aligned optimally to all the
structures in the family. Both the local and global align-
ments are generated for each sequence–structure pair and
the results are compared in terms of a simplified version of
the double Z-score filter discussed earlier. Ideally, all the
scores should be above the thresholds we presented. The

TABLE XI. Self-Recognition for Folds That
Were Not Learned*

Name
(len)a

DALIb THOM2c THOM2c

Z-sc (RMS) Glob Z-sc Loc Z-sc
1hka (158) 33.0 (0.0) 7.1 7.1
1vhi (139) 4.3 (5.2) 0.2 0.3
2a2u (158)d 33.8 (0.0) 2.5 4.0
1bbp (173)d 11.6 (3.3) 3.5 3.0
2ezm (101) 55.3 (0.0) 3.7 3.2
1qgo (257) 46.0 (0.0) 5.6 7.6
1abe (305) 6.4 (3.4) 0.5 0.4
1byf (123) 29.5 (0.0) 1.8 2.8
1ytt (115) 16.4 (2.2) 20.1 1.4
1jwe (114) 26.9 (0.0) 2.6 2.3
1b79 (102) 18.7 (1.3) 0.3 1.3
1b7g (340) 61.5 (0.0) 8.7 8.8
1a7k (358) 25.1 (2.9) 20.4 20.9
1eug (225) 43.0 (0.0) 3.4 3.0
1udh (244) 30.8 (1.7) 21.0 2.9
1d3b (72) 18.4 (0.0) 3.5 2.8
1b34 (118) 13.4 (1.1) 1.9 2.0
1dpt (114) 24.8 (0.0) 6.2 6.0
1ca7 (114) 18.7 (1.2) 4.0 2.5
1bg8 (76) 19.1 (0.0) 3.4 3.5
1dj8 (79) 16.2 (0.7) 5.1 3.9
1qfj (226) 42.7 (0.0) 8.1 8.4
1vid (214) 7.1 (3.1) 22.0 0.5
1bkb (132) 25.1 (0.0) 2.7 1.5
1eif (130) 17.4 (1.6) 3.5 2.0
1b0n (103) 19.5 (0.0) 4.7 5.0
1lmb (87) 8.0 (5.3) 0.3 0.1
1bd9 (180) 38.8 (0.0) 4.5 5.8
1beh (180) 36.0 (0.3) 7.4 5.8
1bhe (376) 70.2 (0.0) 6.7 0.6
1rmg (422) 36.9 (2.2) 0.9 —
1b9k (237) 39.7 (0.0) 8.1 8.2
1qts (247) 36.1 (0.7) 3.5 6.4
1eh2 (95) 24.3 (0.0) 6.0 6.5
1qjt (99) 7.6 (2.5) 3.6 3.7
1bqv (110) 20.9 (0.0) 3.5 2.3
1b4f (82) 3.2 (3.3) 0.0 1.7
1ck2 (104) 26.0 (0.0) 5.2 4.3
1cn8 (104) 14.3 (2.2) 5.3 2.0
1b10 (116) 24.9 (0.0) 0.5 0.5
1jhg (101) 3.4 (6.6) 1.1 1.0
1bnk (100) 24.9 (0.0) 5.4 6.3
1b93 (148) 31.4 (0.0) 4.0 3.2
1mjh (143) 6.1 (3.4) 0.3 1.3
1bk7 (190) 37.2 (0.0) 7.7 9.0
1bol (222) 19.7 (2.3) 0.1 21.0
1bvb (211) 37.3 (0.0) 5.3 4.3

*The S47 set of proteins is used in order to test the self-recognition. It
is also a test of the sensitivity of the results to structural fluctuations
for 25 different folds (of which 22 were not represented in the training
set), using the double Z-score test.
aPairs of homologous structures belonging to the S47 set are specified
(three folds are represented by a single structure, for 2a2u its structural
relative from the training set is included), using their Protein Data Bank
(PDB) codes and lengths (specified in parentheses). If the domain is not
specified and one refers to a multidomain protein, the A (or first) domain
is used. High confidence predictions (global Z-score of .3.0 and local
Z-score .2.0) are indicated in bold. Query sequences are indicated in
italics (for each pair, the first line describes the native alignment and the
second line an alignment into a homologous structure). Two of 25 native
alignments gave weak signals (DNA binding protein 1blo and glycosidase
1bhe). Four other native alignments (2a2u, 1byf, 1jwe, and 1bkb) result
in global Z-scores of somewhat ,3.
b
DALI37 Z-scores and root-mean-square deviations (RMS) for structure-

to-structure alignments into native and homologous structures. Low
DALI Z-scores indicate that only short fragments of the respective
structures are aligned and the resulting RMS may not be representa-
tive. Most of the homologous structures with a DALI Z-score of .10
are recognized with high confidence.
cResults of global and local THOM2 threading alignments of the 25
query sequences into an extended TE 1 S47 set.
dAlignment of the 2a2u sequence into the 1bbp structure was the only
significant hit of any of the query sequences into the structures
included in the training (Tobi–Elber [TE]) set. Thus, no false-positives
with scores greater than our confidence cutoffs were observed.
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scores should also correlate with the RMS. The THOM2
results are compared with the results of the TE pairwise
potential, which was trained on the same (TE) set using
the LP protocol.25

The alignments due to the TE potential are computed
using the first iteration of the FEA.23 In THOM2, the
number of neighbors to a secondary site determines its
identity, whereas in FEA it is approximated by the iden-
tity of the native residue at that site. In principle, the FEA
should be iterated until self-consistency is achieved.23

Alternative to FEA are global optimization techniques22

that are computationally expensive and difficult to use at
the scale of testing presented here. Purely structural
characterization of contact types in THOM2 avoids this
problem, making the THOM2 potential amendable to
dynamic programming, at least for global alignments (see
the section, Self-recognition by Gapped Alignments).

Figures 4a–c shows the joint histograms of the sum of
Z-scores for local and global THOM2 threading alignments
(with trained gap penalties of Table VIIIB) versus the
RMS between the superimposed side-chain centers (see
the section, Training and Test Sets), for globins, immuno-
globins, and POU-like domains, respectively. The vertical
lines in the Figure 4 correspond to the sum of global and
local Z-scores equal to 5, which approximately discrimi-
nates the high confidence matches (with the sum of local
and global Z-scores of .5) and lower confidence matches
that might be obscured by the false-positives. Nearly all
pairs differing by ,3 Å RMS can be identified by THOM2
threading alignments. Most of the matches within the
range of 3–5 Å can still be identified with high confidence.
Overall, 60%, 90%, and 95% of homologues with RMS ,5 Å
are recognized, for POU, globin and immunoglobin fami-
lies, respectively. However, the number of matches with
high confidence quickly decreases with the growing RMS.

The population of matches that are difficult to identify by
pairwise sequence-to-sequence alignments, with structurally
biased gap penalties (see the section, Training of Gap Ener-
gies and the section, Assessing the Specificity of the Protocol)
is represented by the filled squares. All the matches repre-
sented by circles can be identified with high confidence by
sequence-to-sequence alignments (i.e., they result in Z-scores
of .8.0). Essentially all the pairs with RMS of ,3 Å are
identified by sequence alignments as well. Below this thresh-
old, we observe many matches that can be still identified by
threading, but not by sequence alignment (filled rectangles
with the sum of threading Z-scores of .5). We also found
examples of matches detected with high confidence by thread-
ing and not detected by PsiBLAST48 (with default parame-
ters and the PDB database) in many of the families consid-
ered: globins 1flp and 1ash, immunoglobin 2hfm and T-cell
receptor 1cd8, toxins 1acw and 1pnh, lactoglobulin 2blg and
bilin-binding protein 2apd, pheromones 2erl and 1erp, and
POU-like proteins 1akh and 1mbg. By contrast, many se-
quence alignment matches are not detected by threading.

The performance of THOM2 and TE potentials is com-
pared using 1D histograms for the sum of Z-scores for local
and global threading alignments. For the sake of fair
comparison, the ad hoc gap penalties, as defined in the

section, Training of Gap Energies are used for both
potentials. As can be seen in Figure 4d,e for globins and
POU-like domains, the number of low Z-scores for THOM2
is smaller than the number of low Z-scores obtained with
the TE potential and FEA. For example, the number of low
confidence matches (which can still be roughly defined as
matches below the cutoff of 5) for globins increases from
2,401 in the case of THOM2 to 3,350 (out of 8,558 matches) in
the case of the TE potential. It can also be seen that the
distribution of Z-scores is different. The TE potential yields
many high Z-scores for alignments into very close homo-
logues, as opposed to lower scores for more divergent pairs.

The somewhat worse performance of the pairwise model
for these two families may result from the suboptimality of
the alignments that we generate using the FEA. Interest-
ingly, FEA with the TE potential also fails for a larger
number of native alignments. For example, in the family of
DNA binding proteins, the number of native alignments
with very low Z-scores (,4) is equal to 7 for TE and only 2
for THOM2.

By contrast, there are families for which the TE poten-
tial works better. An example is the family of the immuno-
globins (Fig. 4f). The FEA is expected to perform well when
the sequence similarity is sufficiently high, since the
information about the native sequences is used to generate
optimal alignments. The divergence in terms of what can
be detected by sequence similarity is larger for globins and
POU-like proteins than for immunoglobins. For example,
contrary to other families considered here, all the immuno-
globins with an RMS of ,4 Å can be detected by sequence
alignments (Fig. 4c). Therefore, good performance of the
FEA with the TE potential is expected in this case.

The above observation is further supported by the
results of the FEA with the TE potential for eight families
from the S1082 set, considered in the previous section. We
do not include detailed results in this discussion. Instead,
we summarize them. The threading results with the FEA
and the TE potential are robust (and comparable to the
THOM2 results) for RAS, SH3, and acid protease families
that are represented by proteins of high sequence similar-
ity. The results of the FEA are considerably worse for
lactoglobulins and glutathione transferase families that
are characterized by much lower success of sequence-
based recognition (Table XII). At the same time, the FEA
performs as poorly as THOM2 for cytochrome and zinc-
finger families. An exception is observed for the toxin
family, for which the FEA performs considerably better
than THOM2, although there is no (or low) sequence
similarity for some of the matches.

CONCLUSIONS AND FINAL REMARKS

We propose and apply an automated procedure for the
design of threading models. The strength of the procedure,
which is based on linear programming tools, is the automa-
tion and the ability of continuous exact learning. The LP
protocol was used to evaluate different energy functions
for accuracy and recognition capacity. Keeping in mind the
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TABLE XII. Examples of Predictions for Eight Families of Homologous Proteins*

A: RAS familya

Namee GTg LTg Eneh Lenf LSg DALIi

121p 5.9 9.5 1 166 74.8 36.1/0.0/166/100
1kao 6.1 5.9 2 167 46.4 28.5/1.4/166/49
3rabA 4.8 3.2 3 169 17.1 27.5/1.4/165/31
1ftn 3.7 3.8 10 193 21.7 22.9/1.8/161/35
1hurA 2.8 3.6 4 180 9.3 14.8/2.5/147/15
1kevA —k 3.6 —k 351 —k 3.1/4.0/83/11
1mioB —k 3.5 —k 458 —k 3.5/3.6/99/10j

1hdeA —k 3.4 —k 310 —k 2.5/3.6/111/9
1ksaA —k 2.7 —k 366 —k —k

1cbf —k — —k 285 5.1 1.8/3.9/74/9

B: Lactoglobulin familya

Namee GTg LTg Eneh Lenf LSg DALIi

2blg 8.2 10.0 1 162 79.9 35.1/0.0/162/100
1a3yA 4.7 3.8 5 149 10.6 17.6/2.4/140/17
1bj7 3.0 3.1 4 150 4.4 17.8/2.4/142/18
2apd 3.0 2.1 2 169 —k 11.8/3.0/138/15
1mup 1.7 2.5 3 157 8.9 19.2/2.2/146/16
2pcfB —k 3.0 —k 250 —k —k

1lgbC —k —k —k 159 6.0 —k

1nglA —k —k —k 179 5.8 12.0/3.5/136/14

C: Glutathione S-transferase familya

Namee GTg LTg Eneh Lenf LSg DALIi

2gsq 7.0 7.3 1 202 87.3 37.5/0.0/202/100
1axdA 2.0 5.2 3 209 3.3 18.1/2.9/190/17
1gsdA 3.2 3.7 4 221 16.5 25.1/2.1/200/29
1aw9 4.3 2.5 2 216 4.9 18.4/3.1/194/19
1gnwA —k 4.0 —k 211 5.0 17.1/3.1/187/17
1clxA —k 3.7 —k 347 —k 0.5/3.9/50/9
1fhe —k —k —k 217 11.5 20.9/2.3/195/25
2ljrA —k —k —k 244 5.1 15.7/3.1/195/18
1ao7E —k —k —k 245 4.9 —k

D: Phosphotransferase (SH3 domain) familyb

Namee GTg LTg Eneh Lenf LSg DALIi

1aww 3.4 4.6 2 67 19.3 8.1/1.7/56/36j

2semA 3.9 2.6 3 58 13.8 10.2/1.5/56/31j

1fynA 4.3 2.1 1 62 49.8 9.5/1.7/56/47j

4hck 3.2 3.5 5 72 28.4 8.1/2.0/55/40j

1hsq 2.7 4.0 6 71 10.8 9.8/1.4/54/26j

1a3k —k 3.1 —k 137 3.2 —k

1gbrA —k —k —k 74 13.9 7.7/2.0/57/34j

1ark —k —k —k 60 12.3 7.6/1.9/56/20j

lnksA —k —k —k 194 5.5 —k

E: Cytochrome c familyb

Namee GTg LTg Eneh Lenf LSg DALIi

2cxbA 6.8 6.0 1 124 57.4 28.1/0.0/123/100
1co6 —k —k —k 107 15.9 14.4/1.7/99/36
1dsn —k 3.4 —k 333 —k —k

1crxA —k 3.1 —k 322 —k 0.9/3.3/50/8
1ndoA —k —k —k 449 4.9k —k

451c —k —k —k 82 3.9k 4.9/2.1/64/19
3cyr —k —k —k 107 2.9k —k
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necessity for efficient threading algorithms with gaps, we
selected the THOM2 as our best choice.

Statistical filters based on local and global Z-scores were
outlined. We observe that, while using conservative Z-

scores that essentially exclude false-positives, the new
protocol recognizes correctly (without any information
about sequences) most of the family members with the
RMS between the superimposed side-chain centers of #5 Å

TABLE XII. (Continued)

F: Zinc-finger familyb

Namee GTg LTg Eneh Lenf LSg DALIi

1meyC 5.5 3.6 1 87 36.8 8.9/1.8/82/51j

1jhb —k 3.4 —k 106 —k —k

1iml —k 2.9 —k 76 6.5 —k

2adr —k —k —k 60 11.4 1.2/7.9/40/35j

2drpA —k —k —k 66 9.9 4.9/2.6/58/33j

G: Aspartyl protease familyc

Namee GTg LTg Eneh Lenf LSg DALIi

1htrB 9.6 8.3 1 329 95.0 56.8/0.0/329/100
4cms 5.0 5.7 3 323 47.5 39.6/1.7/301/39j

2jxrA 5.6 3.7 2 329 43.9 37.0/2.1/307/41
1clxA 3.7 1.5 4 347 —k —k

1egzA —k 3.6 —k 291 —k —k

1pfzA —k 2.9 —k 380 32.2 31.7/2.4/298/29
1lyaB —k 2.4 —k 241 32.0 9.3/2.4/83/59
2pia 1.3 —k 6 321 6.0 0.5/4.3/49/6

H: Scorpion toxin-like familyd

Namee GTg LTg Eneb Lenf LSg

1pnh 2.8 2.9 2 31 —k

1acw 2.8 2.1 1 29 15.6
1mea 2.5 1.3 4 28 —k

1bh4 1.1 2.5 5 30 —k

1mtx 1.4 —k 10 39 6.0
2pta —k —k —k 35 5.9
1ica —k —k —k 40 4.8
1ilmA —k —k —k 61 3.3

*Eight families, with a number of representatives included in the S1082 set, illustrating various degrees
of success of our threading protocol in terms of sensitivity and specificity. Results are presented for global
and local threading alignments using the threading onion model 2 (THOM2) potential, together with the
results for (structurally biased) local sequence-to-sequence alignments and DALI structure-to-structure
alignments. Representatives used as query sequences aligned to all the structures in the S1082 set are
marked in boldface. Matches are ordered according to the sum of global and local threading Z-scores and
according to Z-scores of the local sequence alignments if no threading signal is detected. False-positives
(defined as matches with DALI Z-scores of ,2.0) are indicated in italics. The highest-scoring false-
positives for both: threading and sequence alignments are reported for each family.
aExample of family with successful threading predictions that do not share a detectable sequence
similarity or that have a weak signal from sequence-to-sequence alignment (Z-score of ,8.0).
bExample of family for which threading is less successful, missing a number of family members (of similar
length) that can be detected by sequence-to-sequence alignment.
cLack of detection when the difference in length is significant is expected, and it is one of the limitations of
the present protocol.
dExample of family for which the DALI results could not be retrieved; therefore, the SCOP classification is
used to define structural relatives (i.e., proteins that do share the knottins fold).
eNames of proteins (Protein Data Bank [PDB] codes).
fLengths of proteins.
gZ-scores are computed using 50 shuffled sequences for a number of alignments with the lowest energies:
20 best matches in case of global threading (GT) alignments, 500 best matches in case of local threading
(LT) alignments, and 50 best matches in case of local sequence (LS) alignments.
hRank of the energy of global threading alignments is reported in the 4th column.
iDALI37 alignments between the (known) structure of a query and the structure of a match are
characterized in the last column: Z-score, RMS, length of the aligned fragment, and the identity for this
fragment are provided.
jComparisons with the FSSP representative of the query structure are used instead of a direct DALI
alignment.
kLack of a detectable (threading, sequence, or structural) similarity.
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Fig. 4. Comparison of family recognition by THOM2 and pair energies. The results of THOM2 (with the
trained gap penalties of Table VIIIB) for families of globins (a), POU-like domains (b), and immunoglobins (Fv
fragments) (c). The joint histograms of the sum of Z-scores for local and global threading alignments versus the
root-mean-square deviations (RMS) between the superimposed (according to structure-to-structure align-
ments) side-chain centers are presented. The population of matches that are difficult to identify by
sequence-to-sequence alignments is represented by the filled squares. Next, the THOM2 results are
compared to the results of Tobi–Elber (TE) pairwise potential,25 using ad hoc gap penalties defined in text. The
TE potential was optimized using the LP protocol and the same training set. The first iteration of the so-called
frozen environment approximation (FEA)23 is performed to obtain approximate alignments for the TE potential.
One-dimensional histograms of the sum of Z-scores for local and global threading alignments for the globins
(d), POU (e), and immunoglobin (f) families. Note, that the number of low THOM2 Z-scores (,5) is smaller for
families of globins and POU-like proteins. By contrast, the TE potential and the FEA perform better for the
family of immunoglobins, which is also easier for sequence alignment methods (see text for details).
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and differences in length of #10%. We also observe many
instances of successful recognition of family members that
are not recognized by pair energies with the so-called
frozen environment approximation.

The present approach is based on fitness of sequences
into structures. Nevertheless, it is easily extendable to
include sequence similarity, family profiles, or second-
ary structures as well. Such complementary “signals”
are often employed in conjunction with pairwise poten-
tials.9 –11,16 Threading protocols that are based exclu-
sively on contact models were shown (consistent with
our observations) to be quite sensitive to variations in
structures.49 THOM2 provides an alternative compa-
rable in performance to pairwise potentials. Therefore,
it can be used as a fast component of fold recognition

methods employing pair energies, which is the target of
a future work.

Despite the limitations of the threading protocol that
is based on the THOM2 potential and the double Z-score
filter (in terms of range of variations in structure and
length that can be recognized), we found a number of
useful predictions for remote homologues (e.g., ref. 50).
Therefore, we decided to take part (group 280) in the
recently held critical assessment of fully automated
protein structure prediction methods (CAFASP),51 even
at the preliminary phase, without using additional
information as secondary structures or family profiles.
The performance of the LOOPP server30 was about
average for all fold recognition targets (e.g., LOOPP
missed some targets recognizable by Psi-BLAST). How-

Figure 4. (Continued.)
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ever, in the category of difficult-to-recognize targets, it
was ranked among the best servers (rank 4 in the
MaxSub 5.0 A evaluation), providing the best predic-
tions among the servers for two difficult targets (T0097
and T0102).51
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